• Title/Summary/Keyword: concrete-filled steel tubular

Search Result 265, Processing Time 0.019 seconds

An experimental study about an effect of shear-connector at a bond stress in concrete filled circular steel tubular column (콘크리트 충전원형강관기둥의 부착응력에 있어 shear-connector의 영향에 관한 실험적 연구)

  • 박성무;김성수;김원호;이형석;이우진;김경모
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.567-572
    • /
    • 2001
  • A transmission of load that is transmitted by beam in steel beam-column joint depends on bond strength between concrete and steel tube. But it is different to transmit a load efficiently in the established concrete filled steel tubular column. Therefore, shear-connector is demanded for a reinforcement about a transmission of load. An ascent of bond stress and a transmission of load after debonding are expected by a reinforcement of shear-connector.

  • PDF

Experimental Study on Bond Stress of Concrete Filled Rectangular Steel Tubular Composite Column Subjected to Axial Load (중심 축 하중을 받는 충전각형강관 합성기둥의 부착응력에 관한연구)

  • Lee, Hyung-Seok;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.3 s.9
    • /
    • pp.105-110
    • /
    • 2003
  • This paper is presented an experimental studies on bond stress between steel and concrete in concrete filled Rectangular steel tubes. In the actual building frames, vertical dead and live loads on beams are usually transferred to columns by beam-to-column connections. In case when concrete filled steel tubes are used as columns of an actual building frame which has a simple connection, shear forces in the beam ends are not directly transferred to the concrete core but directly to the steel tube. Provided that the bond effect between steel tube and concrete core should not be expected, none of the end shear in the beams would be transferred to the concrete core but only to the steel tube. Therefore, it is important to investigate the bond strength between steel tube and concrete core in the absence of shear connectors.

  • PDF

Mechanical behavior of elliptical concrete-filled steel tubular stub columns under axial loading

  • Ding, Fa-xing;Ding, Xing-zhi;Liu, Xue-mei;Wang, Hai-bo;Yu, Zhi-wu;Fang, Chang-jing
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.375-388
    • /
    • 2017
  • This paper presents a combined experimental, numerical, and analytical study on elliptical concrete-filled steel tubular (E-CFT) and rebar-stiffened elliptical concrete-filled steel tubular (RE-CFT) subjected to axial loading. ABAQUS was used to establish 3D finite element (FE) models for the composite columns and the FE results agreed well with the experimental results. It was found that the ultimate load-bearing capacity of RE-CFT stub columns was 20% higher than that of the E-CFT stub columns. Such improvement was attributed to the reinforcement effects from the internal rebar-stiffeners, which effectively enhanced the confinement effect on the core concrete, thereby significantly improved both the ultimate bearing capacity and the ductility of the E-CFT columns. Based on the results, equations were also established in this paper to predict the bearing capacities of E-CFT and RE-CFT stub columns under axial loading. The predicted results agreed well with both experimental and numerical results, and had much higher accuracy than other available methods.

A study on nonlinear analysis and confinement effect of reinforced concrete filled steel tubular column

  • Xiamuxi, Alifujiang;Hasegawa, Akira;Yu, Jiang
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.727-743
    • /
    • 2015
  • According to former studies, the mechanical properties of reinforced concrete filled tubular steel (RCFT) columns differed greatly from that of concrete filled steel tubular (CFT) columns because of interaction of inserted reinforcement in RCFT. Employing an experiment-based verification policy, a general FE nonlinear analysis model was developed to analyze the mechanical behavior and failure mechanism of RCFT columns under uniaxial compression. The reasonable stress-strain relationships were suggested for confined concrete, reinforcements and steel tube in the model. The mechanism for shear failure of concrete core was found out in the numerical simulation, and a none-conventional method and equation for evaluating the confinement effect of RCFT were proposed.

Moment-Curvature Relation of Concrete Filled Circular Steel Tubular Beam with Nonlinear Stress-Strain Properties (비선형 응력-변형률 특성을 갖는 콘크리트 충전 원형강관 보의 모멘트-곡률 관계)

  • Park, Woo-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.195-202
    • /
    • 2005
  • This paper presents moment-curvature analytical method of concrete filled steel tubular members considering intensity increase phenomenon by triaxial compression stress generation. For this purpose, this study considers buckling characteristics about compression department of steel members that filled up light weight and normal concrete. The analytical results are compared with the test results. Even if beam that filled up light weight concrete was calculated moment-curvature relationship easily analytically and could know that analytical results estimates as well agreed with the test results in case filled up normal concrete. In addition, the efficiency and applicabilities of the proposed moment curvature relationship algorithm are verified through conventional experimental results.

Experimental and finite element analyses of eccentric compression of basalt-fiber reinforced recycled aggregate concrete-filled circular steel tubular stub column

  • Zhang, Xianggang;Zhang, Songpeng;Yang, Junna;Chen, Xu;Zhou, Gaoqiang
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.617-631
    • /
    • 2022
  • To study the eccentric compressive performance of the basalt-fiber reinforced recycled aggregate concrete (BFRRAC)-filled circular steel tubular stub column, 8 specimens with different replacement ratios of recycled coarse aggregate (RCA), basalt fiber (BF) dosage, strength grade of recycled aggregate concrete (RAC) and eccentricity were tested under eccentric static loading. The failure mode of the specimens was observed, and the relationship curves during the entire loading process were obtained. Further, the load-lateral displacement curve was simulated and verified. The influence of the different parameters on the peak bearing capacity of the specimens was analyzed, and the finite element analysis model was established under eccentric compression. Further, the design-calculation method of the eccentric bearing capacity for the specimens was suggested. It was observed that the strength failure is the ultimate point during the eccentric compression of the BFRRAC-filled circular steel tubular stub column. The shape of the load-lateral deflection curves of all specimens was similar. After the peak load was reached, the lateral deflection in the column was rapidly increased. The peak bearing capacity decreased on enhancing the replacement ratio or eccentric distance, while the core RAC strength exhibited the opposite behavior. The ultimate bearing capacity of the BFRRAC-filled circular steel tubular stub column under eccentric compression calculated based on the limit analysis theory was in good agreement with the experimental values. Further, the finite element model of the eccentric compression of the BFRRAC-filled circular steel tubular stub column could effectively analyze the eccentric mechanical properties.

A Experimental study about an effect of shear-connector at a bond stress in concrete filled rectangular tubular column (콘크리트 충전 각형 강관기둥의 부착응력에 있어 shear-connector의 영향에 관한 실험적 연구)

  • 박성무;김성수;김원호;이형석;이경섭;송준근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.561-566
    • /
    • 2001
  • Load at steel beam column joints transfered by beam depend on bond strength between concrete and steel tube. But it is different to transmit a load efficiently in the established concrete filled steel tubular column. Therefore, shear-connector is demanded for transfering loads efficiently. An ascent of bond stress and a transmission of load after debonding are expected by a reinforcement of shear-connector

  • PDF

Axial behaviour of rectangular concrete-filled cold-formed steel tubular columns with different loading methods

  • Qu, Xiushu;Chen, Zhihua;Sun, Guojun
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.71-90
    • /
    • 2015
  • Axial compression tests have been carried out on 18 rectangular concrete-filled cold-formed steel tubular (CFST) columns with the aim of investigating the axial behaviour of rectangular CFST columns under different loading methods (steel loaded-first and full-section loaded methods). The influence of different loading methods on the ultimate strength of the specimens was compared and the development of Poisson's Ratio as it responds to an increasing load was reported and analysed. Then, the relationship between the constraining factor and the strength index, and the relationship between the constraining factor and ductility index of the specimens, were both discussed. Furthermore, the test results of the full-section loaded specimens were compared with five international code predicted values, and an equation was derived to predict the axial carrying capacity for rectangular CFST columns with a steel loaded-first loading method.

A study on bending strength of reinforced concrete filled steel tubular beam

  • Xiamuxi, Alifujiang;Hasegawa, Akira;Tuohuti, Akenjiang
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.639-655
    • /
    • 2014
  • The mechanical characteristic of reinforced concrete filled steel tubular (RCFT) structures are differed from that of concrete filled tubular steel (CFT) structures because the reinforcement in RCFT largely affects the performance of core concrete such as ductility, strength and toughness, and hence the performance of RCFT should be evaluated differently from CFT. To examine the effect axial reinforcement on bending performance, an investigation on RCFT beams with varying levels of axial reinforcement is performed by the means of numerical parametric study. According to the numerical simulation results with 13 different ratios of axial reinforcement, it is concluded that the reinforcement has obvious effect on bending capacity, and the neutral axis of RCFT is different from CFT, and an evaluation equation in which the effect of axial reinforcement is considered for ultimate bending strength of RCFT is proposed.

Mock-up Tests of Concrete Filled Steel Tubular Columns (콘크리트 충전 강관 기둥의 시공에 관한 연구)

  • Lee, Deok-Chan;Choi, Jin-Man;Lee, Do-Heon;Kim, Hoon;Kim, Jin-Cheol;Park, Yon-Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.382-387
    • /
    • 1996
  • Three concrete filled steel tubular columns with six inner diaphrams are constructed and tested under field conditions. The size and shape of three columns are exactly same. The cross section is $40\times40cm$, and the height is 9m. Each column is constructed with normal concrete, CFST concrete, and high flowing concrete, respectively. Concrete is pumped into bottom parts of steel tubular columns from a concrete pump on the ground. Test data indicate that the slump flow of the concrete place in the top of the column is lower than that of the concrete before pumping by about 10~20cm. Slump flow loss of high flowing concrete caused by pumping is high compared to the other concretes. Concrete pump pressure of high flowing concrete is somewhat higher than that of CFST concrete.

  • PDF