• Title/Summary/Keyword: concrete wall

Search Result 1,582, Processing Time 0.026 seconds

Thermal Crack Control of Wall Elements in LiNAC Structure (LiNAC실 벽체 구조물의 온도 균열 제어)

  • Son, Myong-Sik;Do, Yool-Ho;Na, Woon;Park, Chan-Kyu;Lee, Hoi-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.413-416
    • /
    • 2006
  • This paper presents the analytical results on the heat of hydration and induced thermal cracking of the wall elements in LiNAC that is a radioactive shield concrete structure. This wall elements measuring 1.2 m in thickness and 32 m in length tend to exhibit thermal cracking due to heat of hydration and high constraint effects caused by slab element located in the lower part of structure. In this analysis, four different construction stages were considered to find out the most effective concrete casting method in terms of thermal stress. Among the construction methods adopted in this analysis, the method of installation of construction connection measuring 1.2 m at the both side of wall elements was very effective way to control the thermal stress, resulting in increase thermal cracking index of wall elements in LiNAC structure. Finally, the wall elements in LiNAC structure was cast successfully according to the proposed construction method.

  • PDF

Compressive behavior of profiled double skin composite wall

  • Qin, Ying;Li, Yong-Wei;Su, Yu-Sen;Lan, Xu-Zhao;Wu, Yuan-De;Wang, Xiang-Yu
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.405-416
    • /
    • 2019
  • Profiled composite slab has been widely used in civil engineering due to its structural merits. The extension of this concept to the bearing wall forms the profiled composite wall, which consists of two external profiled steel plates and infill concrete. This paper investigates the structural behavior of this type of wall under axial compression. A series of compression tests on profiled composite walls consisting of varied types of profiled steel plate and edge confinement have been carried out. The test results are evaluated in terms of failure modes, load-axial displacement curves, strength index, ductility ratio, and load-strain response. It is found that the type of profiled steel plate has influence on the axial capacity and strength index, while edge confinement affects the failure mode and ductility. The test data are compared with the predictions by modern codes such as AISC 360, BS EN 1994-1-1, and CECS 159. It shows that BS EN 1994-1-1 and CECS 159 significantly overestimate the actual compressive capacity of profiled composite walls, while AISC 360 offers reasonable predictions. A method is then proposed, which takes into account the local buckling of profiled steel plates and the reduction in the concrete resistance due to profiling. The predictions show good correlation with the test results.

A study on the quantity of shear-wall by seismic retrofit of wall-type apartment (벽식 아파트 내진보강을 위한 신설벽체 벽량에 관한 연구)

  • Jung, Woo-Kyung;Hong, Geon-Ho;Song, Jin-Gyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.169-172
    • /
    • 2006
  • Wall construction apartment built before 1988 years need internal examination reinforcement according to existing laws ans regulations at remodeling because do not earthquake resistant design. Established newly wall to interest paid back at the same time a the principal direction for wall construction apartment internal examination reinforcement, and satisfied internal examination standard because uses width displacement between floor. This study analyzes displacement value such as latitude and presented position of efficient reinforcement wall and wall quantity at earthquake resistant design of wall construction apartment.

  • PDF

Behavior of Concrete/Cold Formed Steel Composite Beams: Experimental Development of a Novel Structural System

  • Wehbe, Nadim;Bahmani, Pouria;Wehbe, Alexander
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.51-59
    • /
    • 2013
  • The use of light-gauge steel framing in low-rise commercial and industrial building construction has experienced a significant increase in recent years. In such construction, the wall framing is an assembly of cold-formed steel (CFS) studs held between top and bottom CFS tracks. Current construction methods utilize heavy hot-rolled steel sections, such as steel angles or hollow structural section tubes, to transfer the load from the end seats of the floor joist and/or from the load-bearing wall studs of the stories above to the supporting load-bearing wall below. The use of hot rolled steel elements results in significant increase in construction cost and time. Such heavy steel elements would be unnecessary if the concrete slab thickening on top of the CFS wall can be made to act compositely with the CFS track. Composite action can be achieved by attaching stand-off screws to the track and encapsulating the screw shank in the deck concrete. A series of experimental studies were performed on full-scale test specimens representing concrete/CFS flexural elements under gravity loads. The studies were designed to investigate the structural performance of concrete/CFS simple beams and concrete/CFS continuous headers. The results indicate that concrete/CFS composite flexural elements are feasible and their structural behavior can be modeled with reasonable accuracy.

Thermal Performance Evaluation of Earth-Applied Trombe Wall by Simulation (흙을 이용한 트롬월의 열성능 시뮬레이션 평가)

  • Noh, J.H.;Kim, J.T.
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.63-71
    • /
    • 2004
  • Energy and environmental concerns accelerate the interest in passive solar heating in buildings, which utilizes solar energy through natural heat transfer. Moreover concerns about environmentally friendly materials were also increased. This study aims to evaluate the thermal performance of a Trombe wall built with earth. The thermal performance of the Trombe walls was analysed with results from computer simulations with TRNSYS 15. The thermal performance of the three types of Trombe wall was compared.: concrete. rammed earth. adobe. It was found that Trombe wall with the thermal storage wall of earth performed better than that of concrete. Rammed earth and adobe Trombe walls gained 4.7% and 12.8% more solar energy. respectively. than the concrete Trombe wall. In earth-applied Trombe walls. the energy gain by natural convection released from the airspace was about 75% of the total solar gains. that took 15% more than concrete Trombe wall. Rammed earth and adobe Trombe walls seem to be more suitable for buildings that use mostly in daytime. such as school, office and so on.

Behavior of UHPC-RW-RC wall panel under various temperature and humidity conditions

  • Wu, Xiangguo;Yu, Shiyuan;Tao, Xiaokun;Chen, Baochun;Liu, Hui;Yang, Ming;Kang, Thomas H.K.
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.459-467
    • /
    • 2020
  • Mechanical and thermal properties of composite sandwich wall panels are affected by changes in their external environment. Humidity and temperature changes induce stress on wall panels and their core connectors. Under the action of ambient temperature, temperature on the outer layer of the wall panel changes greatly, while that on the inner layer only changes slightly. As a result, stress concentration exists at the intersection of the connector and the wall blade. In this paper, temperature field and stress field distribution of UHPC-RW-RC (Ultra-High Performance Concrete - Rock Wool - Reinforced Concrete) wall panel under high temperature-sprinkling and heating-freezing conditions were investigated by using the general finite element software ABAQUS. Additionally, design of the connection between the wall panel and the main structure is proposed. Findings may serve as a scientific reference for design of high performance composite sandwich wall panels.

Structural performance of reinforced concrete wall with boundary columns under shear load

  • Chu, Liusheng;He, Yuexi;Li, Danda;Ma, Xing;Cheng, Zhanqi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.479-489
    • /
    • 2020
  • This paper proposed a novel form of reinforced concrete (RC) shear wall confined with boundary columns. The structural effect of applying steel fiber reinforced concrete (SFRC) in the wall-column systems was studied. Three full-scale wall samples were constructed including two RC wall-RC column samples with different stirrup ratios and one RC wall-SFRC column sample. Low frequency cyclic testing was carried out to investigate the failure modes, hysteretic behavior, load-bearing capacity, ductility, stiffness degradation and energy dissipation. ABAQUS models were set up to simulate the structural behavior of tested samples, and good agreement was achieved between numerical simulation and experimental results. A further supplementary parametric study was conducted based on ABAQUS models. Both experimental and numerical results showed that increasing stirrup ratio in boundary columns did not affect much on load bearing capacity or stiffness degradation of the system. However, applying SFRC in boundary columns showed significant enhancement on load bearing capacity. Numerical simulation also shows that the structural performances of RC wall-SFRC column system were comparable to a wall-column system fully with SFRC.

An influence of the Concrete blocks for Retaining Wall and Revetment on the Under Water Environment (콘크리트 호안블록이 수질환경에 미치는 영향)

  • Kim, Jeong-Jin;Choi, Hun;Lee, Sang-Tea;Kim, Gi-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.167-170
    • /
    • 1999
  • Recently, it is often reported that many rivers are polluted with diverse swages etc. Concrete blocks for retaining wall and revetment is considered as one of the reasons that bring about water pollution, which is indicated by the grouops related to the conservation of environment. From the viewpoint of theoretical matters, although concrete blocks for retaining wall and revetment are know to have no relations to water pollution, it is required to measure the level of water pollution more accurately. Therefore, in this paper, analysis of water, which concrete blocks for retaining wall and revetment is put in for certain periods, are carried out in order to the level of water pollution.

  • PDF