• Title/Summary/Keyword: concrete tunnel

Search Result 594, Processing Time 0.022 seconds

Mechanical Properties of Concrete using Alpha-Calcium Sulfate Hemihydrate (알파형 반수석고를 활용한 콘크리트의 역학적 특성)

  • Shin, Kyoung-Su;Kim, Gyu-Yong;Sung, Gil-Mo;Woo, Sang-Kyun;Lim, Byung-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.72-79
    • /
    • 2019
  • Concrete is vulnerable to cracks due to volume changes caused by temperature changes, shrinkage during curing, external forces, or poor construction. In particular, concrete placed in electric power tunnel structures can generate cracks by a variety of factors. As a result, these tunnel structures require continuous maintenance. In this study, we investigated the mechanical properties of electric power tunnel concrete using alpha-calcium sulfate hemihydrate, which is an industrial byproduct that has excellent expansion performance. To compensate for the decrease in compressive strength when substituting alpha-calcium sulfate hemihydrate, based on previous research, we added 9% alpha-calcium sulfate hemihydrate and adjusted the amount of admixture while using the same amount of cement. We then evaluated the mechanical properties of the concrete. The results showed that the compressive strength of the concrete was higher than that of ordinary Portland cement (OPC), and the shrinkage of concrete was reduced by more than 30% compared to that of OPC. Therefore, adding 9% of alpha-calcium sulfate hemihydrate is expected to have a significant effect in reducing concrete cracks.

Developments of monitoring system to measure sound absorbing coefficient and structural stability of sound absorbing panel on the concrete track in the urban train tunnel (도시철도 터널 내부 콘크리트 도상 국소공명흡음판의 흡음계수 및 구조안정성 평가를 위한 계측시스템 개발)

  • Oh, Soon-Taek;Lee, Dong-Jun;Lee, Dong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • In this study, a test-bed system simulated a tunnel and concrete track is tested on cite and invested an allowed limit of multi-layered sound absorbing panel for reducing noise reflected on the concrete track in train tunnel considering the criteria and limitation on the theoretical back ground. The studied results are an effective evaluating system of the sound absorbing coefficient influenced fluid effects depending on the vehicle speed in the urban train tunnel and measuring not only structural behaviors of maximum displacement and acceleration of the panel but also dynamic characteristics of damping ratio and natural frequency.

A study on the fire resistance method using FR-ECC in long tunnel (고인성내화모르터(FR-ECC)를 사용한 장대터널 내화안전대책에 관한 연구)

  • Kim, Se-Jong;Kim, Dong-Jun;Kwon, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.1
    • /
    • pp.9-18
    • /
    • 2011
  • The spalling phenomenon occurs in high-strength concrete when several factors such as sharp temperature increase, high water content, low water/cement ratio and local stress concentration in material combine in the concrete material. On the basis of the factors, the preventing methods from the spalling are known as reduction of temperature increase, preventing of concrete fragmentation and fast drying of internal moisture. In this study, the reduction of temperature increase was proposed as the most effective spalling-preventing method among the spalling-preventing methods. Engineered cementitious composite for fireproof and repair materials was developed in order to protect the new and existing RC structures form exterior deterioration factors such as fire, cloride ion, etc. This study was carried out to estimate the fire-resisting performance of high strength concrete slab or tunnel lining by repaired engineered cementitious composite (ECC) or fiber reinforcement cemetitious composite (FRCC) under fire temperature curve. and them we will descrike the result of HIDA tunnel in Japan.

An Evaluation of the Mechanical Property for the Backfilling Material of the NATM Composite Lining Tunnel using the Lightweight Foamed Mortar (경량기포 모르타르를 이용한 NATM Composite 라이닝 터널 뒤채움재의 역학적 특성 평가)

  • Ma, Sang-Joon;Choi, Hee-Sup;Kim, Dong-Min;Lee, Heung-Soo;Kim, Kyung-Duk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.717-720
    • /
    • 2008
  • This paper, an evaluation of the mechanical property for the backfilling materials of the NATM Composite lining tunnel using the lightweight foamed mortar, relates to the performance of permeability, compressive strength and unit volume weight. Therefore, this study is aimed to prove the three main factor that refered to the above line for development of new tunnel method. As the result of this study, it would be confirmed that the D mix is better than other mixs a side of all tests and its relation that is for the tunnel backfilling materials.

  • PDF

Behavior of tunnel form buildings under quasi-static cyclic lateral loading

  • Yuksel, S. Bahadir;Kalkan, Erol
    • Structural Engineering and Mechanics
    • /
    • v.27 no.1
    • /
    • pp.99-115
    • /
    • 2007
  • In this paper, experimental investigations on the inelastic seismic behavior of tunnel form buildings (i.e., box-type or panel systems) are presented. Two four-story scaled building specimens were tested under quasi-static cyclic lateral loading in longitudinal and transverse directions. The experimental results and supplemental finite element simulations collectively indicate that lightly reinforced structural walls of tunnel form buildings may exhibit brittle flexural failure under seismic action. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in outermost shear-walls. This type of failure takes place due to rupturing of longitudinal reinforcement without crushing of concrete, therefore is of particular interest in emphasizing the mode of failure that is not routinely considered during seismic design of shear-wall dominant structural systems.