• Title/Summary/Keyword: concrete systems

Search Result 1,509, Processing Time 0.027 seconds

Smart Concrete Structures with Optical Fiber Sensors

  • Kim, Ki-Soo
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.109-114
    • /
    • 1999
  • Recently the interest in the safety assessment of civil infrastructures has increased. As bridge structures become large-scale, it is necessary to monitor and maintain the safety of large bridges, which requires smart systems that can make long-term monitoring a reality . Civil engineers have applied monitoring systems to several bridges, such as the New Haeng-Ju Bridge and Riverside Urban Highway Bridge, but these applications have some problems with the sensors for long-term measurement, setup techniques for the bridge monitoring system and the assessment of measured data. In the present study, an optical fiber sensor smart system was tested and confirmed in laboratory tests on the concrete members. By Attaching optical fiber sensors to the structural parts of the Sung-San Bridge, the bridge load test was measured. These smart concrete structure systems can be applied to bridges and the load capacity of the bridge can assessed.

  • PDF

Hollow Reinforced Concrete Bridge Column Systems with Reinforcement Details for Material Quantity Reduction: I. Development and Verification (물량저감 철근상세를 갖는 중공 철근콘크리트 교각 시스템: I. 개발 및 검증)

  • Kim, Tae-Hoon;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • The purpose of this study was to investigate the performance of hollow reinforced concrete bridge column systems with reinforcement details for material quantity reduction. The proposed reinforcement details have economic feasibility and rationality and make construction periods shorter. A model of hollow reinforced concrete bridge columns was tested under a constant axial load and a quasi-static cyclically reversed horizontal load. As a result, proposed reinforcement details for material quantity reduction were equal to existing reinforcement details in terms of required performance. The companion paper presents the experimental and analytical study for the performance assessment of hollow reinforced concrete bridge column systems with reinforcement details for material quantity reduction.

Application of Wavenumber-TD approach for time harmonic analysis of concrete arch dam-reservoir systems

  • Lotfi, Vahid;Zenz, Gerald
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.353-371
    • /
    • 2018
  • The Wavenumber or more accurately Wavenumber-FD approach was initially introduced for two-dimensional dynamic analysis of concrete gravity dam-reservoir systems. The technique was formulated in the context of pure finite element programming in frequency domain. Later on, a variation of the method was proposed which was referred to as Wavenumber-TD approach suitable for time domain type of analysis. Recently, it is also shown that Wavenumber-FD approach may be applied for three-dimensional dynamic analysis of concrete arch dam-reservoir systems. In the present study, application of its variation (i.e., Wavenumber-TD approach) is investigated for three-dimensional problems. The method is initially described. Subsequently, the response of idealized Morrow Point arch dam-reservoir system is obtained by this method and its special cases (i.e., two other well-known absorbing conditions) for time harmonic excitation in stream direction. All results for various considered cases are compared against the exact response for models with different values of normalized reservoir length and reservoir base/sidewalls absorptive conditions.

Inelastic analysis of concrete beams strengthened with various fiber reinforced polymer (FRP) systems

  • Terro, M.J.;El-Hawary, M.M.;Hamoush, S.A.
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.177-188
    • /
    • 2005
  • This paper presents a numerical model developed to evaluate the load-deflection and moment-curvature relationship for concrete beams strengthened externally with four different Fiber Reinforced Polymer (FRP) composite systems. The developed model considers the inelastic behavior of concrete section subjected to a combined axial force and bending moment. The model accounts for tensile strength of concrete as defined by the modulus of rupture of concrete. Based on the adopted material constitutive relations, the model evaluates the sectional curvature as a function of the applied axial load and bending moment. Deflections along the beam are evaluated using a finite difference technique taking into account support conditions. The developed numerical technique has been tested on a cantilever beam with a transverse load applied at its end. A study of the behavior of the beam with tension reinforcement compared to that with FRP areas giving an equivalent ultimate moment has been carried out. Moreover, cracking of the section in the tensile region at ultimate load has also been considered. The results indicated that beams reinforced with FRP systems possess more ductility than those reinforced with steel. This ductility, however, can be tuned by increasing the area of FRP or by combining different FRP layers.

A Study on the Statistical Distribution of Rebound Number and Ultrasonic Pulse Velocity in RC and PSC Concrete Structures (RC 및 PSC 콘크리트에서 반발도 및 초음파 속도의 변화에 대한 연구)

  • Sa, Min-Hyung;Yoon, Young-Geun;Lee, In-Bok;Woo, In-Sung;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.53-58
    • /
    • 2017
  • The rebound hammer test and the measurement of ultrasonic pulse velocity(UPV) have been widely used for the physical properties & condition evaluation of reinforced & prestressed concrete structures for a long time, but the acoustoelastic effects by the prestressing in the prestressed concrete structures on the rebound number and ultrasonic pulse velocity have not been studied clearly. Therefore, this study investigated the data distribution of the rebound numbers and ultrasonic pulse velocities in reinforced and prestressed concrete slabs of $3000{\times}3000mm$ with a thickness of 250 mm. Also, the Kolmogorov-Smirnov goodness-of-fit test was done in order to identify statistical consistency and reliability. The statistical analysis results show that the rebound number and ultrasonic pulse velocities increased about 1.9% and 2.5%, respectively when prestressing was applied. As expected, the UPV shows better statistical reliability and potential for in situ evaluation than the RB because the RB are more sensitive to testing posture, surface condition, temperature and humidity so on. The experimental data in this study can be used for the condition assessment of reinforced and prestressed concrete structures by the rebound number and ultrasonic pulse velocity.

Experimental and numerical study on shear studs connecting steel girder and precast concrete deck

  • Xia, Ye;Chen, Limu;Ma, Haiying;Su, Dan
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.433-444
    • /
    • 2019
  • Shear studs are often used to connect steel girders and concrete deck to form a composite bridge system. The application of precast concrete deck to steel-concrete composite bridges can improve the strength of decks and reduce the shrinkage and creep effect on the long-term behavior of structures. How to ensure the connection between steel girders and concrete deck directly influences the composite behavior between steel girder and precast concrete deck as well as the behavior of the structure system. Compared with traditional multi-I girder systems, a twin-I girder composite bridge system is more simplified but may lead to additional requirements on the shear studs connecting steel girders and decks due to the larger girder spacing. Up to date, only very limited quantity of researches has been conducted regarding the behavior of shear studs on twin-I girder bridge systems. One convenient way for steel composite bridge system is to cast concrete deck in place with shear studs uniformly-distributed along the span direction. For steel composite bridge system using precast concrete deck, voids are included in the precast concrete deck segments, and they are casted with cast-in-place concrete after the concrete segments are erected. In this paper, several sets of push-out tests are conducted, which are used to investigate the heavier of shear studs within the voids in the precast concrete deck. The test data are analyzed and compared with those from finite element models. A simplified shear stud model is proposed using a beam element instead of solid elements. It is used in the finite element model analyses of the twin-I girder composite bridge system to relieve the computational efforts of the shear studs. Additionally, a parametric study is developed to find the effects of void size, void spacing, and shear stud diameter and spacing. Finally, the recommendations are given for the design of precast deck using void for twin I-girder bridge systems.

Corrosion Inhibition of Steel Rebar in Concrete with the Coated MCI 2022

  • Bezad Bavarian;Lisa Reiner;Kim, Chong Y.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.63-67
    • /
    • 2002
  • The induced chemical and salt solution in water or admixture are originated to the corrosion process of the steeo rebar. These liquids penetrate into concrete as the accompanied by the chemical reaction and cause to attack the steel rebar in concrete. Concrete surfaces which it exposed to deicing, water and sea water is allowed to enter the chlorides in the structures. To prevent from the source of corrosion and deterioration Is subjected to put an end to corrode or reduce to contaminate on the steel rebar. As this reason the MCI 2022 products are applied to the surface of concrete and steel rebar. The concrete samples were made of to the kind of four, i.e. RF, MR, MS, and MM. Corrosion inhibitor is applied to coat on the surface of concrete after it had been cured for 28days. Specimen were immersed in a 3.5% sodium chloride solution. Concrete specimen were tested to determine the changes of the resistance polarization, Rp, over a 22 weeks period. MCI 2022 is significantly shown the corrosion inhibition of steel rebar in 3.5% NaCl solution. In the each different concrete sample, MS and MM is seemed to be better than others. The results are proofed that MCI 2022 is promised to maintain the inhibition of corrosion with high resistance polarization of the steel rebar in concrete.

  • PDF

Equivalent modal damping ratios for non-classically damped hybrid steel concrete buildings with transitional storey

  • Sivandi-Pour, Abbas;Gerami, Mohsen;Khodayarnezhad, Daryush
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.383-401
    • /
    • 2014
  • Over the past years, hybrid building systems, consisting of reinforced concrete frames in bottom and steel frames in top are used as a cost-effective alternative to traditional structural steel or reinforced concrete constructions. Dynamic analysis of hybrid structures is usually a complex procedure due to various dynamic characteristics of each part, i.e. stiffness, mass and especially damping. In hybrid structures, one or more transitional stories with composite sections are used for better transition of lateral and gravity forces. The effect of transitional storey has been considered in no one of the studies in the field of hybrid structures damping. In this study, a method has been proposed to determining the equivalent modal damping ratios for hybrid steel-concrete buildings with transitional storey. In the proposed method, hybrid buildings are considered to have three structural systems, reinforced concrete, composite steel and concrete (transitional storey) and steel system. In this method, hybrid buildings are substituted appropriately with 3-DOF system.

Surface Image Analysis for Evaluating Porosity and Permeability Coefficient of Permeable Concrete Block (투수 콘크리트 블록 공극률 및 투수계수 평가를 위한 표면 이미지 분석 기법 개발)

  • Jo, Sangbeom;Son, Younghwan;Kim, Donggeun;Jeon, Jihun;Kim, Taejin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.2
    • /
    • pp.47-57
    • /
    • 2023
  • The increase of impermeable area ratio is causing hydrologic cycle problems in urban areas and groundwater depletion in rural areas, permeable pavements are getting attention to expand permeable areas. The performance of the permeable concrete block pavement, which is part of the permeable pavement, is greatly affected by the porosity. In addition, the permeability coefficient is a major factor when designing permeable concrete block pavement. Existing porosity and permeability test methods have problems such as uneconomical or poor field applicability. The object of this study was to develop a methodology for evaluating porosity and permeability coefficient using a surface image of a permeable concrete block. Specimens are manufactured with various porosity ranges and porosity and permeability tests are performed. After surface image preprocessing, normalization and binarization methods were compared. Through this, the method with the highest correlation with the lab test result was determined. From the results, the PDR (pore determined ratio) was obtained. Simple linear regression analysis is performed with PDR and lab test results. The results showed a high correlation of R2 more than 0.8, and the errors were also low.

Selecting optimized concrete structure by Analytic Hierarchy Process (AHP)

  • Ebrahimi, Morteza;Hedayat, Amir Ahmad;Fakhrabadi, Hamed
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.327-336
    • /
    • 2018
  • Increase in population and its daily increasing in our today society results in an increase in housing demand while traditional methods are not applicable. The project preparation and realization processes, based on theoretical and empirical studies, a creation of goods, services, and technologies, are the most important human activities. Selection of effective technological systems in construction is a complex multi-criteria decision-making task. Many decision-makers refuse innovations once faced with similar difficulties. Therefore, using modern materials and methods in this industry is necessary. Modern methods increase quality and construction speed in addition to decrease energy consumption and costs. One of the problems in the way of any project is selecting construction system compatible with the project needs and characteristics. In the present research, different concrete structures such as common reinforced concrete (RC) structure, prefabricated, Insulating Concrete Formwork (ICF), 3D Panel and Tunnel Concrete Formwork (TCF) for buildings with limited floors in Iran are studied and compared from the viewpoint of different criteria like cost, time, applicability and technical characteristics with industrialization approach. Therefore, some questionnaires filled out by construction industry experts in order to compare criteria and sub-criteria in addition to evaluation of optimized structural systems. Then, results of the questionnaires ranked by Analytic Hierarchy Process (AHP) and the most effective alternative selected. The AHP results show that 3D Panel system 36.5%, ICF 21.7%, TCF 19.03%, prefabricated system 13.3% and common RC system 9.3% are the most and the least efficient systems respectively.