• Title/Summary/Keyword: concrete struts

Search Result 70, Processing Time 0.027 seconds

Shear strength of connections between open and closed steel-concrete composite sandwich structures

  • Kim, Woo-Bum;Choi, Byong Jeong
    • Steel and Composite Structures
    • /
    • v.11 no.2
    • /
    • pp.169-181
    • /
    • 2011
  • The behavior of connections between open sandwich slabs and double steel skin composite walls in steel plate-concrete(SC) structure is investigated by a series of experimental programs to identify the roles of components in the transfer of forces. Such connections are supposed to transfer shear by the action of friction on the interface between the steel surface and the concrete surface, as well as the shear resistance of the bottom steel plate attached to the wall. Experimental observation showed that shear transfer in slabs subjected to shear in short spans is explained by direct force transfer via diagonal struts and indirect force transfer via truss actions. Shear resistance at the interface is enhanced by the shear capacity of the shear plate as well as friction caused by the compressive force along the wall plate. Shear friction resistance along the wall plate was deduced from experimental observation. Finally, the appropriate design strength of the connection is proposed for a practical design purpose.

Strut-tie model evaluation of behavior and strength of pre-tensioned concrete deep beams

  • Yun, Young Mook
    • Computers and Concrete
    • /
    • v.2 no.4
    • /
    • pp.267-291
    • /
    • 2005
  • To date, many studies have been conducted for the analysis and design of reinforced concrete members with disturbed regions. However, prestressed concrete deep beams have not been the subject of many investigations. This paper presents an evaluation of the behavior and strength of three pre-tensioned concrete deep beams failed by shear and bond slip of prestressing strands using a nonlinear strut-tie model approach. In this approach, effective prestressing forces represented by equivalent external loads are gradually introduced along strand's transfer length in the nearest strut-tie model joints, the friction at the interface of main diagonal shear cracks is modeled by the aggregate interlock struts along the direction of the cracks in strut-tie model, and an algorithm considering the effect of bond slip of prestressing strands in the strut-tie model analysis and design of pre-tensioned concrete members is implemented. Through the strut-tie model analysis of pre-tensioned concrete deep beams, the nonlinear strut-tie model approach proved to present effective solutions for predicting the essential aspects of the behavior and strength of pre-tensioned concrete deep beams. The nonlinear strut-tie model approach is capable of predicting the strength and failure modes of pre-tensioned concrete deep beams including the anchorage failure of prestressing strands and, accordingly, can be employed in the practical and precise design of pre-tensioned concrete deep beams.

Strut-Tie Model Approach Associated with 3-Dimensional Grid Elements for Design of Structural Concrete - (I) Proposal of Approach (3차원 격자요소를 활용한 콘크리트 구조부재의 스트럿-타이 모델 설계 방법 - (I) 방법의 제안)

  • Kim, Byung Hun;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.425-436
    • /
    • 2014
  • Although the strut-tie model approaches of current design codes are regarded as the valuable methods for designs of structural concretes with D-regions, the approaches have to be improved because of the uncertainties in terms of the concepts and provisions for designs of 3-dimensional structural concretes. To improve the uncertainties, a new strut-tie model approach is proposed in this study. In the proposed approach, the concepts of employing a 3-dimensional grid element allowing load transfers in all directions at a node to construct a strut-tie model, a numerical analysis approach to determine the effective strengths of concrete struts and nodal zones by reflecting the effects of reinforcing bars and 3-dimensional stress state, and maximum areas of struts and ties to examine their load carrying capacities are integrated into the strut-tie model approaches of current design codes.

Bi-Axial Stress Field Analysis on Shear-Friction in RC Members (2축-응력장 이론을 이용한 철근콘크리트 부재의 전단마찰 해석)

  • Kim, Min-Joong;Lee, Gi-Yeol;Lee, Jun-Seok;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.25-35
    • /
    • 2012
  • For a member subjected to direct shear forces, forces are transferred across interface concrete area and resisted by shear transfer capacity. Shear-friction equations in recent concrete structural design provisions are derived from experimental test results where shear-friction capacity is defined as a function of steel reinforcement area contained in the interface. This empirical equation gave too conservative values for concrete members with large amounts of reinforcement. This paper presents a method to evaluate shear transfer strengths and to define ultimate conditions which result in crushing of concrete struts after yielding of longitudinal reinforcement perpendicular to the interface concrete. This method is based on the bi-axial stress field theory where different constitutive laws are applied in various means to gain accurate shear strengths by considering softening effects of concrete struts based on the modified compression-field theory and the softened truss model. The validity of the proposed method is examined by applying to some selected test specimens in literatures and results are compared with recent design code provisions. A general agreement is observed between predicted and measured values at ultimate loading stages in initially uncracked normal-strength concrete test.

Direct Inelastic Strut-Tie Model Using Secant Stiffness (할선강성을 이용한 직접 비탄성 스트럿-타이 모델)

  • Park Hong-Gun;Kim Yun-Gon;Eom Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.201-212
    • /
    • 2005
  • A new strut-tie model using secant stiffness, Direct Inelastic Strut-Tie Model, was developed. Since basically the proposed design method uses linear analysis, it is convenient and stable in numerical analysis. At the same time, the proposed design method can accurately estimate the inelastic strength and ductility demands of struts and ties because it can analyzes the inelastic behavior of structure using iterative calculations for secant stiffness. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. Design examples using the proposed method were presented, and its advantages were highlighted by the comparison with the traditional strut-tie model. The Direct Inelastic Strut-Tie Model, as an integrated analysis/design method, can directly address the design strategy intended by the engineer to prevent development of macro-cracks and brittle failure of struts. Since the proposed model can analyze the inelastic deformation, indeterminate strut-tie model can be used. Also, since the proposed model controls the local deformations of struts and ties, it can be used as a performance-based design method for various design criteria.

Unified theory of reinforced concrete-A summary

  • Hsu, Thomas T.C.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.1
    • /
    • pp.1-16
    • /
    • 1994
  • A unified theory has recently been developed for reinforced concrete structures (Hsu 1993), subjected to the four basic actions - bending, axial load, shear and torsion. The theory has five components, namely, the struts-and-ties model, the equilibrium (or plasticity) truss model, the Bernoulli compatibility truss model, the Mohr compatibility truss model and the softened truss model. Because the last three models can satisfy the stress equilibrium, the strain compatibility and the constitutive laws of materials, they can predict not only the strength, but also the load-deformation history of a member. In this paper the five models are summarized to illustrate their intrinsic consistency.

An Experimental Study on the Shear Behavior of R/C Deep Beems with Web Opentings (개구부를 갖는 철근콘크리트 깊은 보의 전단거동에 대한 실험 연구)

  • 임채문;이진섭;양창현;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.280-285
    • /
    • 1996
  • The shear behavior of reinforced concrete deep beams with web opennings has been scrutinized experimentally to verify the influences of the structural parameters such as size, shape, location and reinfrocements of web openings, and shear span ratio. A total of 22 specimens has been tested under one or two point loading conditions at the laboratory. In the tests most specimens have shown shear failures with inclined cracks from the loacing points to the supports through openings. The ultimate strengths of the specimens measured from the tests have shown wide differences depending on the locations of the openings which deter the formation of the compression struts between the loading points and the supports. The effects of the reinforcements and the geomtry of the openings on the shear strengths and the crack developments have been carefully checked and analyzed.

  • PDF

The Shear Strength and Deformability of R/C Coupling Beams using Strut-and-Tie Models (스트럿-타이 모델을 이용한 철근 콘크리트 연결보의 전단강도와 변형능력)

  • Jang, Sang-Ki;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.349-352
    • /
    • 2004
  • In this study, a strut-and-tie models for the coupling beam based on deformations are presented. To design shear-dominated R/C coupling beams, it is important to consider shear strength deterioration with required deformations. This study proposes the method of estimating shear strength of the reinforced concrete coupling beams. The proposed method determines the strain states from target displacements based on the nonlinear truss analysis. The estimated horizontal strain of beam is then used in calculating the strength of the diagonal strut with compatibility conditions. The deterioration of shear strength of the coupling beam depends on the strength degradation of struts due to plastic deformations.

  • PDF

Longitudinal Elongation of Slender Reinforced Concrete Beams Subjected to Cyclic Loading (주기하중을 받는 세장한 철근콘크리트 보의 길이방향 인장변형)

  • Eom, Tae-Sung;Park, Hong-Gun;Kang, Su-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.169-172
    • /
    • 2008
  • Longitudinal elongation develops in reinforced concrete beams that exhibit flexural yielding during cyclic loading. The longitudinal elongation can decrease the shear strength and deformation capacity of the beams. In the present study, nonlinear truss model analysis was performed to study the elongation mechanism of reinforced concrete beams. The results showed that residual tensile plastic strain of the longitudinal reinforcing bar in the plastic hinge is the primary factor causing the member elongation, and that the shear-force transfer mechanism of diagonal concrete struts has a substantial effect on the magnitude of the elongation. Based on the analysis results, a simplified method for evaluating member elongation was developed. The proposed method was applied to test specimens with various design parameters and loading conditions..

  • PDF

Determination of strut efficiency factor for concrete deep beams with and without fibre

  • Sandeep, M.S.;Nagarajan, Praveen;Shashikala, A.P.;Habeeb, Shehin A.
    • Advances in Computational Design
    • /
    • v.1 no.3
    • /
    • pp.253-264
    • /
    • 2016
  • Based on the variation of strain along the cross section, any region in a structural member can be classified into two regions namely, Bernoulli's region (B-region) and Disturbed region (D-region). Since the variation of strain along the cross section for a B-region is linear, well-developed theories are available for their analysis and design. On the other hand, the design of D-region is carried out based on thumb rules and past experience due to the presence of nonlinear strain distribution. Strut-and-Tie method is a novel approach that can be used for the analysis and design of both B-region as well as D-region with equal importance. The strut efficiency factor (${\beta}_s$) is needed for the design and analysis of concrete members using Strut and Tie method. In this paper, equations for finding ${\beta}_s$ for bottle shaped struts in concrete deep beams (a D-region) with and without steel fibres are developed. The effects of transverse reinforcement on ${\beta}_s$ are also considered. Numerical studies using commercially available finite element software along with limited amount of experimental studies were used to find ${\beta}_s$.