• Title/Summary/Keyword: concrete stress state evaluation

Search Result 28, Processing Time 0.021 seconds

Application of Nonlinear Ultrasonic Method for Monitoring of Stress State in Concrete

  • Kim, Gyu Jin;Park, Sun Jong;Kwak, Hyo Gyoung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.121-129
    • /
    • 2016
  • As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members.

Adoption of Nonlinear Resonant Ultrasonic Spectroscopy for the Evaluation of Stress State on Concrete in Prestressed Beam (프리스트레스트 보의 콘크리트 응력 수준 평가를 위한 비선형 초음파 공진 기법의 적용)

  • Kim, Gyu-Jin;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.215-222
    • /
    • 2017
  • In order to evaluate a stress state of concrete according to the change of tensile force of prestressed beam, improved nonlinear resonant ultrasonic spectroscopy(NRUS) method is proposed. This technique is advantageous to evaluate the stress state in initial state because the method shows much higher sensitivity than existing linear ultrasonic methods. The NRUS technique measure a nonlinearity parameter, which is calculated from the resonant frequency shift of ultrasonic wave related to the medium state, and the result is also closely related to the stress state of concrete. In this study, the nonlinearity parameter was measured with the change of tensile force to verify the close relationship between the two factors, and the effect of repetitive load cycle on the change of nonlinearity parameter was analyzed. In addition, sensitivity comparison with the linear ultrasonic pulse velocity method was performed. Through the experimental results, the possibility of NRUS technique for the evaluation of stress state in prestressed beam was confirmed.

An Experimental Method for the Evaluation of Dead Load Stress in Existing Concrete Bridges (콘크리트 교량의 고정하중 응력에 관한 실험적 측정방법)

  • Park, Dae Sung;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.701-706
    • /
    • 2006
  • This paper describes an attempt to develop a practical method for the measurement of dead load stress in existing concrete bridges. In most cases, the dead load stress was determined by various theoretical calculations. However, the theoretical calculation cannot always provide a sufficient information on the current stress state due to lots of uncertainty. The key idea incorporated with this paper is the partial sectioning method which is able to estimate current stress state in concrete bridges subjected to dead load. The proposed method is applied to the safety assessment of actual concrete bridges and the applicability of this system is investigated.

Evaluation of Ultimate Tendon Stress in Prestressed Concrete Members with External Unbonded Tendons (외부 비부착 강선을 가진 부재의 극한 강선응력 평가)

  • 오병환;유성원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.381-386
    • /
    • 1999
  • The member with external unbonded tendon has two remarkable characteristics, i.e., eccentricity variation and slip by friction force at deviators, compared with internal bonded or unbonded member. An efficient numerical procedure for the nonlinear analysis of prestressed concrete beam with external unbonded tendon considering two remarkable characteristics is formulated and corresponding computer code is developed. On the basis of statistical process of parametric study results, strain compatibility method, eccentricity variation predictor and tendon stress predictor at ultimate state are proposed and verified with test results and existing Codes, which can evaluate flexural behavior at ultimate state. Finally, the proposed procedure and predictors can be efficiently used for the realistic and accurate analysis of prestressed concrete members with external unbonded tendons.

  • PDF

Ultimate behavior of reinforced concrete cooling tower: Evaluation and comparison of design guidelines

  • Noh, Hyuk-Chun;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.223-240
    • /
    • 2006
  • Taking into account the geometrical and material nonlinearities, an ultimate behavior of reinforced concrete cooling tower shell in hyperbolic configuration is presented. The design wind pressures suggested in the guidelines of the US (ACI) and Germany (VGB), with or without the effect of internal suction, are employed in the analysis to examine the qualitative and quantitative characteristics of each design wind pressure. The geometrical nonlinearity is incorporated by the Green-Lagrange strain tensor. The nonlinear features of concrete, such as the nonlinear stress-strain relation in compression, the tensile cracking with the smeared crack model, an effect of tension stiffening, are taken into account. The biaxial stress state in concrete is represented by an improved work-hardening plasticity model. From the perspective of quality of wind pressures, the two guidelines are determined as highly correlated each other. Through the extensive analysis on the Niederaussem cooling tower in Germany, not only the ultimate load is determined but also the mechanism of failure, distribution of cracks, damage processes, stress redistributions, and mean crack width are examined.

Proposal of Stress-Strain Relations Considering Confined Effects for Various Composite Columns (합성형태에 따른 콘크리트 구속효과를 고려한 응력-변형률 관계식의 제안)

  • Park, Kuk Dong;Hwang, Won Sub;Yoon, Hee Taek;Sun, Woo Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.265-275
    • /
    • 2010
  • Concrete filled steel tube and concrete encased steel tube columns are expected to have confined effects of concrete by steel and reinforced effects of local buckling by concrete. On the basis of confined state concrete models of previous researches, stress-strain and load-displacement relations of RC, CFT and CET columns are analyzed by steel ratio. After comparing analysis results with experimental results, Modified stress-strain relations are derived through evaluation the influence upon confined effects of concrete in each cases. Also, the modified stress-strain models are carried out to be compared with specified strength of various countries.

Nonlinear analysis of service stresses in reinforced concrete sections-closed form solutions

  • Barros, Helena F.M.;Martins, Rogerio A.F.
    • Computers and Concrete
    • /
    • v.10 no.5
    • /
    • pp.541-555
    • /
    • 2012
  • This paper presents an algorithm for the evaluation of stresses in reinforced concrete sections under service loads. The algorithm is applicable to any section defined by polygonal contours and is based on an analytical integration of the stresses. The nonlinear behaviour of concrete is represented by the parabola-rectangle law used in the Eurocode-2 for the ultimate concrete design. An integrated definition of the strains in concrete and steel is possible by the use of Heaviside functions, similarly to what is done for ultimate section design in Barros et al. (2004). Other constitutive equations for the definition of the stresses in the concrete or steel can be easily incorporated into the code. The examples presented consist in the evaluation of resulting axial load and bending moment in an irregular section and in a section in L shape. The results, for service stresses, can also be plotted in terms of design abacus; a rectangular doubly reinforced section is presented as example.

Vehicle-bridge coupling vibration analysis based fatigue reliability prediction of prestressed concrete highway bridges

  • Zhu, Jinsong;Chen, Cheng;Han, Qinghua
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.203-223
    • /
    • 2014
  • The extensive use of prestressed reinforced concrete (PSC) highway bridges in marine environment drastically increases the sensitivity to both fatigue-and corrosion-induced damage of their critical structural components during their service lives. Within this scenario, an integrated method that is capable of evaluating the fatigue reliability, identifying a condition-based maintenance, and predicting the remaining service life of its critical components is therefore needed. To accomplish this goal, a procedure for fatigue reliability prediction of PSC highway bridges is proposed in the present study. Vehicle-bridge coupling vibration analysis is performed for obtaining the equivalent moment ranges of critical section of bridges under typical fatigue truck models. Three-dimensional nonlinear mathematical models of fatigue trucks are simplified as an eleven-degree-of-freedom system. Road surface roughness is simulated as zero-mean stationary Gaussian random processes using the trigonometric series method. The time-dependent stress-concentration factors of reinforcing bars and prestressing tendons are accounted for more accurate stress ranges determination. The limit state functions are constructed according to the Miner's linear damage rule, the time-dependent S-N curves of prestressing tendons and the site-specific stress cycle prediction. The effectiveness of the methodology framework is demonstrated to a T-type simple supported multi-girder bridge for fatigue reliability evaluation.

Analytical model for flexural and shear strength of normal and high-strength concrete beams

  • Campione, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.199-207
    • /
    • 2021
  • In the present paper, an analytical model is proposed to determine the flexural and shear strength of normal and high-strength reinforced concrete beams with longitudinal bars, in the presence of transverse stirrups. The model is based on evaluation of the resistance contribution due to beam and arch actions including interaction with stirrups. For the resistance contribution of the main bars in tension the residual bond adherence of steel bars, including the effect of stirrups and the crack spacing of R.C. beams, is considered. The compressive strength of the compressed arch is also verified by taking into account the biaxial state of stresses. The model was verified on the basis of experimental data available in the literature and it is able to include the following variables in the resistance provision: - geometrical percentage of steel bars; - depth-to-shear span ratio; - resistance of materials; - crack spacing; - tensile stress in main bars; - residual bond resistance including the presence of stirrups;- size effects. Finally, some of the more recent analytical expressions able to predict shear and flexural resistance of concrete beams are mentioned and a comparison is made with experimental data.

Fatigue performance monitoring of full-scale PPC beams by using the FBG sensors

  • Wang, Licheng;Han, Jigang;Song, Yupu
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.943-957
    • /
    • 2014
  • When subjected to fatigue loading, the main failure mode of partially prestressed concrete (PPC) structure is the fatigue fracture of tensile reinforcement. Therefore, monitoring and evaluation of the steel stresses/strains in the structure are essential issues for structural design and healthy assessment. The current study experimentally investigates the possibility of using fiber Bragg grating (FBG) sensors to measure the steel strains in PPC beams in the process of fatigue loading. Six full-scale post-tensioned PPC beams were exposed to fatigue loading. Within the beams, the FBG and resistance strain gauge (RSG) sensors were independently bonded onto the surface of tensile reinforcements. A good agreement was found between the recorded results from the two different sensors. Moreover, FBG sensors show relatively good resistance to fatigue loading compared with RSG sensors, indicating that FBG sensors possess the capability for long-term health monitoring of the tensile reinforcement in PPC structures. Apart from the above findings, it can also be found that during the fatigue loading, there is stress redistribution between prestressed and non-prestressed reinforcements, and the residual strain emerges in the non-prestressed reinforcement. This phenomenon can bring about an increase of the steel stress in the non-prestressed reinforcement.