The aim of this paper is to develop the ISCOSTFUN (Intelligent System for Prediction of Concrete Strength by Functional Networks) in order to provide in-place strength information of the concrete to facilitate concrete from removal and scheduling for construction. For this purpose, the system is developed using Functional Network (FN) by learning functions instead of weights as in Artificial Neural Networks (ANN). In serial functional network, the functions are trained from enough input-output data and the input for one functional network is the output of the other functional network. Using ISCOSTFUN it is possible to predict early strength as well as 7-day and 28-day strength of concrete. Altogether seven functional networks are used for prediction of strength development. This study shows that ISCOSTFUN using functional network is very efficient for predicting the compressive strength development of concrete and it takes less computer time as compared to well known Back Propagation Neural Network (BPN).
Castelli, Mauro;Trujillo, Leonardo;Goncalves, Ivo;Popovic, Ales
Computers and Concrete
/
v.19
no.6
/
pp.651-658
/
2017
High-performance concrete, besides aggregate, cement, and water, incorporates supplementary cementitious materials, such as fly ash and blast furnace slag, and chemical admixture, such as superplasticizer. Hence, it is a highly complex material and modeling its behavior represents a difficult task. This paper presents an evolutionary system for the prediction of high performance concrete strength. The proposed framework blends a recently developed version of genetic programming with a local search method. The resulting system enables us to build a model that produces an accurate estimation of the considered parameter. Experimental results show the suitability of the proposed system for the prediction of concrete strength. The proposed method produces a lower error with respect to the state-of-the art technique. The paper provides two contributions: from the point of view of the high performance concrete strength prediction, a system able to outperform existing state-of-the-art techniques is defined; from the machine learning perspective, this case study shows that including a local searcher in the geometric semantic genetic programming system can speed up the convergence of the search process.
Proceedings of the Korea Concrete Institute Conference
/
2002.10a
/
pp.647-652
/
2002
In the previous study, authors presented the I-ProConS (Intelligent PREdiction system of CONcrete Strength) using artificial neural networks (ANN) that provides in-place strength information of the concrete to facilitate concrete form removal and scheduling for construction. The serious problem of the system has occured, which it cannot appropriately predict the concrete strength when the curing temperature of a curing day is changed. This is because it uses the single neural networks, which all nodes are fully connected, and thus it cannot smoothly respond for external impact. However this paper presents that the problem can be solved by multiple neural networks, which is composed of five ANNs.
Splitting tensile strength (STS) of high-performance concrete (HPC) is one of the important mechanical properties for structural design. This property is related to compressive strength (CS), water/binder (W/B) ratio and concrete age. This paper presents a clustering-based fuzzy model for the prediction of STS based on the CS and (W/B) at a fixed age (28 days). The data driven fuzzy model consists of three main steps: fuzzy clustering, inference system, and prediction. The system can be analyzed directly by the model from measured data. The performance evaluations showed that the fuzzy model is more accurate than the other prediction models concerned.
Kim, Sang-Min;Shin, Se-Jun;Seo, Hang-Goo;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
Proceedings of the Korean Institute of Building Construction Conference
/
2020.06a
/
pp.25-26
/
2020
In this study, by applying the concrete compressive strength estimation system Concrete IoT Management System (hereinafter referred to as CIMS) to the concrete slab concrete in the domestic field, the purpose of this study is to confirm the practical use of CIMS and to verify the accuracy of estimating the initial strength of concrete. As a result, it shows a high correlation when the compressive strength and CIMS estimated strength of the specimen for structural management are converted and compared with the integrated temperature. However, in order to determine a more accurate experimental constant, it is necessary to consider the results up to 28 days.
Park, So-Hyun;Oh, Yong-Seok;Song, Jeong-Hwa;Oh, Kun-Soo
Proceeding of Spring/Autumn Annual Conference of KHA
/
2008.04a
/
pp.399-404
/
2008
The objective of this study is to develop the predicting method of concrete strength when remove concrete form-work without making cement test piece at construction site. For this purpose, this study catches the Maturity Method by using RFID, the usability of which is now being emphasized at site, accumulates and record the strength data, which can be gained with the results of existing Maturity Method method that is accompanied with strength estimation study, in database, and finally proposes the system structure which can check the estimated strength by Maturity Method. The merits of this method by using of Maturity Method are as follows; More objective, precise, and rapid decision can be made to the concrete strength and about the maintaining period of concrete form and form support. More efficient control of integrated material management system can be possible. Architectural field example using RFID can be suggested more concretely. RFID applicability can be extended by using DB of material integration management system.
Kim, Sang-Min;Shin, Se-Jun;Seo, Hang-Goo;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
Proceedings of the Korean Institute of Building Construction Conference
/
2020.06a
/
pp.23-24
/
2020
In this study, the concrete compressive strength estimation system Concrete IoT Management System (hereinafter referred to as CIMS) was developed, and CIMS was applied to domestic field structure slabs and wall concrete to check whether CIMS is practically available and to estimate the accuracy of the initial strength estimation of concrete. As a result, it shows a very high correlation when the compressive strength of the specimen for structural management is compared with the estimated strength of CIMS in terms of integrated temperature, and it is expected to be gradually applied to domestic construction sites in the future.
Fly ash and silica fume belong to industry by-products that can be used to produce concrete. This study shows the model of a neural network to evaluate the strength development of blended concrete containing fly ash and silica fume. The neural network model has four input parameters, such as fly ash replacement content, silica fume replacement content, water/binder ratio, and ages. Strength is the output variable of neural network. Based on the backpropagation algorithm, the values of elements in the hidden layer of neural network are determined. The number of neurons in the hidden layer is confirmed based on trial calculations. We find (1) neural network can give a reasonable evaluation of the strength development of composite concrete. Neural network can reflect the improvement of strength due to silica fume additions and can consider the reductions of strength as water/binder increases. (2) When the number of neurons in the hidden layer is five, the prediction results show more accuracy than four neurons in the hidden layer. Moreover, five neurons in the hidden layer can reproduce the strength crossover between fly ash concrete and plain concrete. Summarily, the neural network-based model is valuable for design sustainable composite concrete containing silica fume and fly ash.
Cheon Ju Hyun;Kim Tae Hoon;Lee Sang Cheol;Chung Young Soo;Lee Kwang Myong;Shin Hyun Mock
Proceedings of the Korea Concrete Institute Conference
/
2004.05a
/
pp.532-535
/
2004
This paper presents a nonlinear finite element analysis procedure for the prediction of shear strength of reinforced concrete deep beams. A computer program, named RCAHESTC(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile. compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The proposed numerical method for the prediction of shear strength of reinforced concrete deep beams is verified by comparison with the reliable experimental results.
In this paper, an Adaptive nerou-based inference system (ANFIS) is being used for the prediction of shear strength of high strength concrete (HSC) beams without stirrups. The input parameters comprise of tensile reinforcement ratio, concrete compressive strength and shear span to depth ratio. Additionally, 122 experimental datasets were extracted from the literature review on the HSC beams with some comparable cross sectional dimensions and loading conditions. A comparative analysis has been carried out on the predicted shear strength of HSC beams without stirrups via the ANFIS method with those from the CEB-FIP Model Code (1990), AASHTO LRFD 1994 and CSA A23.3 - 94 codes of design. The shear strength prediction with ANFIS is discovered to be superior to CEB-FIP Model Code (1990), AASHTO LRFD 1994 and CSA A23.3 - 94. The predictions obtained from the ANFIS are harmonious with the test results not accounting for the shear span to depth ratio, tensile reinforcement ratio and concrete compressive strength; the data of the average, variance, correlation coefficient and coefficient of variation (CV) of the ratio between the shear strength predicted using the ANFIS method and the real shear strength are 0.995, 0.014, 0.969 and 11.97%, respectively. Taking a look at the CV index, the shear strength prediction shows better in nonlinear iterations such as the ANFIS for shear strength prediction of HSC beams without stirrups.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.