• Title/Summary/Keyword: concrete specimens

Search Result 3,631, Processing Time 0.043 seconds

Structural Performance Evaluation of Reinforced Concrete Shear Walls with Various Connection Type Under Load Reversals. (반복하중을 받는 철근콘크리트 전단벽체의 접합방식에 따른 구조성능 평가)

  • 신종학;하기주;권중배;전찬목
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.513-518
    • /
    • 1997
  • In this study, nine reinforced concrete infilled frames involved bare frames were tested during vertical and cyclic loads simultaneously. This test programs were carried to investigate the horizontal strength and the crack propagation in variance with hoop reinforcement ratio. All specimens were modeling in one-third scale size. In this experimental program structural performance of reinforced concrete shear wall were focus at connection types. Based on the test results, the following conclusions are made. In the boundary column member of reinforced concrete shear wall, increasing the ratio of hoop bar in two or three times, in the fully babel type, the shear and horizontal strength of specimens were increased 1.1-1.2 times than that of fully rigid frame. And infilled shear wall specimen were increased 1.17-1.27 times than that. Fully rigid babel type shear wall specimens were increased 5.7~8.0 times, and infilled shear wall specimens were increased about 4.0~5.6 times than that of infilled shear wall specimens.

  • PDF

Seismic shear strengthening of R/C beams and columns with expanded steel meshes

  • Morshed, Reza;Kazemi, Mohammad Taghi
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.333-350
    • /
    • 2005
  • This paper presents results of an experimental study to evaluate a new retrofit technique for strengthening shear deficient short concrete beams and columns. In this technique a mortar jacket reinforced with expanded steel meshes is used for retrofitting. Twelve short reinforced concrete specimens, including eight retrofitted ones, were tested. Six specimens were tested under a constant compressive axial force of 15% of column axial load capacity based on original concrete gross section, $A_g$, and the concrete compressive strength, ${f_c}^{\prime}$. Main variables were the spacing of ties in original specimens and the volume fraction of expanded metal in jackets. Original specimens failed before reaching their nominal calculated flexural strength, $M_n$, and had very poor ductility. Strengthened specimens reached their nominal flexural strength and had a ductility capacity factor of up to 8 for the beams and up to 5.5 for the columns. Based on the test results, it can be concluded that expanded steel meshes can be used effectively to strengthen shear deficient concrete members.

Application on the Modeling Rusults of GPR Wave Propagation through Concrete Specimens for Rebar Detection In Concrete Specimens (전자파 모델링을 이용한 콘크리트 내 철근탐사)

  • 남국광;임홍철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.135-140
    • /
    • 2001
  • The radar method is becoming one of the major nondestructive testing (NDT) techniques for concrete structures. Numerical modeling of electromagnetic wave is needed to analyze radar measurement results and to study the influence of measurement parameters on the radar measurements. Finite difference-time domain (FD-TD) method is used to simulate electromagnetic wave propagation through concrete specimens. In the experiments, three concrete specimens are made with the dimensions of 100 cm (length) x 100 cm (wideth) x 14 cm (depth). Three specimens had a Dl6 steel bar at 8, 10, 12 cm depth.

  • PDF

Cyclic Loading Test of Anchorage System for Externally Prestressed CFRP Plate (외부긴장 CFRP판용 정착부의 반복하중 실험)

  • Jung, Woo-Tai;Park, Jong-Sup;Park, Young-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.262-265
    • /
    • 2006
  • This paper presents results on static and cyclic loading tests of anchorage system for externally prestressed CFRP plate. A total of 6 specimens have been tested. The specimens can be classified into the concrete surface specimens and the concrete near surface mounted specimens. Static test results before and after cyclic loading test reveal that anchorage system for externally prestressed CFRP plate has static capacity more than CFRP tensile strength.

  • PDF

Experimental Study on Failure Behavior of Plain Concrete - Biaxial Stress Test (콘크리트 파괴거동특성의 실험적 연구I-이축응력시험)

  • 이상근;이상민;박상순;한상훈;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.315-320
    • /
    • 2003
  • Two different strength types of plain concrete plate specimens (200$\times$200$\times$60mm) were tested under different biaxial load combinations. The specimens were subjected to biaxial combinations covering the three regions of compression-compression, compression-tension, and tension-tension. The loading platens with Teflon pads were used to reduce a confining effect in boundary surface between the concrete specimen and the solid platen. The principal deformations in the specimens were recorded, and the failure modes along with each stress ratio were examined. Based on the strength data, the failure envelops were developed for each type of plain concrete. The biaxial stress-strain responses of concrete plate specimens for three biaxial loading regions were also plotted. The test data indicated that the strength of concrete under biaxial compression ($f_2 / f_1$$_1$=-1/-1) is about 17 percent larger than under uniaxial compression.

  • PDF

Behavior of exterior concrete beam-column joints reinforced with Shape Memory Alloy (SMA) bars

  • Azariani, Hossein Rezaee;Esfahani, M. Reza;Shariatmadar, Hashem
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.83-98
    • /
    • 2018
  • This research was conducted to study the behavior of exterior concrete beam-column joints with reinforced shape memory alloy (SMA) bars tested under cyclic loading. These bars benefit from superelastic behavior and can stand high loads without residual strains. The experimental part of the study, 8 specimens of exterior concrete beam-column joints were made and tested. Two different types of concrete with 30 and 45 MPa were used. Four specimens contained SMA bars and 4 specimens contained steel bars in beam-column joints. Furthermore, different transverse reinforcements were used in beams investigate the effects of concrete confinement. Specimens were tested under cyclic loading. Results show that SMA bars are capable of recentering to their original shape after standing large displacements. Due to the superelastic behavior of SMA bars, cracks at the joint core vanish under cyclic loading. As the cyclic loading increased, bending failure occurred in the beam outside the joint core. In the analytical parts of the study, specimens were simulated using the SeismoStruct software. Experimental and analytical results showed a satisfactory correlation. Plastic hinge length at the beam joint for specimens with SMA and steel bars was calculated by empirical equations, experimental and analytical results. It was shown that Paulay's and Priestley's equations are appropriate for concrete beam-column joints in both types of bars.

Mechanical behaviour of steel fibre reinforced SCC after being exposed to fire

  • Ponikiewski, Tomasz;Katzer, Jacek;Kilijanek, Adrian;Kuzminska, Elzbieta
    • Advances in concrete construction
    • /
    • v.6 no.6
    • /
    • pp.631-643
    • /
    • 2018
  • The focus of this paper is given to the investigation of mechanical properties of steel fibre reinforced self-compacting concrete after being exposed to fire. The research programme covered tests of two sets of beams: specimens subjected to fire and specimens not subjected to fire. The fire test was conducted in an environment mirroring one of possible real fire situations where concrete surface for an extended period of time is directly exposed to flames. Micro-cracking of concrete surface after tests was digitally catalogued. Compressive strength was tested on cube specimens. Flexural strength and equivalent flexural strength were tested according to RILEM specifications. Damages of specimens caused by spalling were assessed on a volumetric basis. A comparison of results of both sets of specimens was performed. Significant differences of all tested properties between two sets of specimens were noted and analysed. It was proved that the limit of proportionality method should not be used for testing fire damaged beams. Flexural characteristics of steel fibre reinforced self-compacting concrete were significantly influenced by fire. The influence of fire on properties of steel fibre reinforced self-compacting concrete was discussed.

Interface treatment in shotcrete jacketing of reinforced concrete columns to improve seismic performance

  • Vandoros, Konstantinos G.;Dritsos, Stephanos E.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.1
    • /
    • pp.43-61
    • /
    • 2006
  • An investigation of the effectiveness of the interface treatment when column concrete jacketing is performed is presented. Alternative methods of interface connection were used in order to investigate the performance of strengthened concrete columns. These connecting techniques involved roughening the surface of the original column, embedding steel dowels into the original column and a combination of these two techniques. The experimental program included three strengthened specimens, one original specimen (unstrengthened) and one as-built specimen (monolithic). The specimens represented half height full-scale old Greek Code (1950's) designed ground floor columns of a typical concrete frame building. The jackets of the strengthened specimens were constructed with shotcrete. All specimens were subjected to displacement controlled earthquake simulation loading. The seismic performance of the strengthened specimens is compared to both the original and the monolithic specimens. The comparison was performed in terms of strength, stiffness and hysteretic response. The results demonstrate the effectiveness of the strengthening methods and indicate that the proper construction of a jacket can improve the behaviour of the specimens up to a level comparable to monolithic behaviour. It was found that different methods of interface treatment could influence the failure mechanism and the crack patterns of the specimens. It was also found that the specimen that combined roughening with dowel placement performed the best and all strengthened columns were better at dissipating energy than the monolithic specimen.

Non-destructive evaluation of concrete quality using PZT transducers

  • Tawie, R.;Lee, H.K.;Park, S.H.
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.851-866
    • /
    • 2010
  • This paper presents a new concept of using PZT (lead zircornate titanate) transducers as a non-destructive testing (NDT) tool for evaluating quality of concrete. Detection of defects in concrete is very important in order to check the integrity of concrete structures. The electro-mechanical impedance (EMI) response of PZT transducers bonded onto a concrete specimen can be used for evaluating local condition of the specimen. Measurements are carried out by electrically exciting the bonded PZT transducers at high frequency range and taking response measurements of the transducers. In this study, the compression test results showed that concrete specimens without sufficient compaction are likely to fall below the desired strength. In addition, the strength of concrete was greatly reduced as the voids in concrete were increased. It was found that the root mean square deviation (RMSD) values yielded between the EMI signatures for concrete specimens in dry and saturated states showed good agreement with the specimens' compressive strength and permeable voids. A quality metric was introduced for predicting the quality of concrete based on the dry-saturated state of concrete specimens. The simplicity of the method and the current development towards low cost and portable impedance measuring system, offer an advantage over other NDE methods for evaluating concrete quality.

Size Effect of Axial Compressive Strength of Concrte in Notched Specimens (노치가 있는 콘크리트 공시체의 축압축강도에 대한 크기효과)

  • 김민욱;김진근;김봉준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.135-140
    • /
    • 1999
  • The size effect of axial compressive strength of concrete in notched specimens was experimentally investigated. Based on the concept of the fracture mechanics and size effect law, theoretical studies for axial compressive failure of concrete were reviewed, and two failure modes of concrete specimen under compression were discussed. In this study, experiment of axial compressive failure, which is one of the two failure modes, was carried out by using double cantilever fracture specimens. By varying the slenderness of cantilevers and the eccentricity of applied loads with respect to the axis of each cantilever, the size effect of axial compressive strength of concrete was investigated, and predicted by Bazant's size effect law. The test results show that size effect appears conspicuously for all series of specimens. For the eccentricity of loads, the influence of tensile and compressive stress at the notch tip are significant and so that the size effect is varied. In other words, if the influence of tensile stress at the notch tip grows up, the size effect of concrete increases. And the fact that the fracture process zone must be sufficiently secured for more accurate experiment was affirmed.

  • PDF