• Title/Summary/Keyword: concrete spalling

Search Result 353, Processing Time 0.017 seconds

Axial Load Test of Prefabricated Composite Columns Using Bolt-connected Steel Angles (볼트접합 앵글을 사용한 합성기둥의 중심축 압축실험)

  • Kim, Hyeon Jin;Hwang, Hyeon Jong;Park, Hong Gun;Kim, Dong Kwan;Yang, Jong Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.147-158
    • /
    • 2017
  • The present study focused on the structural performance of newly developed prefabricated composite columns (PSRC composite column) using bolt-connected steel angles. Concentric axial loading tests were performed for four 2/3 scaled PSRC column specimens and two conventional SRC column specimens. The test parameters were the spacing and sectional configurations of lateral reinforcement, and width-to-thickness ratio of steel angles. The test results showed that the axial load-carrying capacity and deformation capacity of the PSRC column specimens were comparable to those of the conventional SRC column specimens. Closely spaced steel plates and Z-shaped steel plates for lateral reinforcement increased the deformation capacity of the PSRC column specimens. The load-carrying capacity was greater than the prediction by current design codes. Numerical analysis was performed for the specimens. The results agreed well with the test results in terms of initial stiffness, load-carrying capacity, except for strength degradation due to cover concrete spalling.

Research on Concrete Damage and Fireproofing Applications in Underground Fires (지하공간 화재에 따른 콘크리트 손상과 내화재 적용에 대한 연구)

  • Soon-Wook Choi;Soo-Ho Chang;Tae-Ho Kang;Chulho Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.169-188
    • /
    • 2023
  • Fires in tunnels are characterized by higher temperature rise and higher maximum temperatures compared to ground fires. For this reason, countries such as the Netherlands and Germany have developed separate temperature-time curves for use in tunnel fires. Fires in tunnels cause damage to the tunnel lining, such as loss of section and deterioration of the material properties. This study reviewed the design concept of fire stability of structures, section loss due to spalling, changes in physicochemical and mechanical properties of tunnel lining materials, fireproofing materials for structure safety, and fire damage prediction models. In order to secure the stability of a structure against fire, it is necessary to identify the type of structure and the possible fire load at the design stage, identify the expected section loss and damage range, and prepare for such damage through fireproofing materials. In this study, we have summarized the matters that can be referred to in performing such a series of tasks and presented our opinions on them.

Deterioration Evaluation Method of Noise Barriers for Managements of Highway (고속도로 방음벽 유지관리를 위한 방음벽 노후도 평가 방안)

  • Kim, Sangtae;Shin, Ilhyoung;Kim, Kyoungsu;Kim, Daae;Kim, Heungrae;Im, Jahae;Lee, Jajun
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.4
    • /
    • pp.387-399
    • /
    • 2019
  • This research aimed to prepare the classification of the damage types and the damage rating system of noise barriers for expressway noise barriers and to develop deterioration evaluation method of noise barriers by reflecting them. The noise barrier consists of soundproof panels, foundations and posts and the soundproof panels with 10 different types of materials are used in a single or mixed form.In this paper, damage of soundproof panel shows a single or composite damage, and thus a evaluation model of deterioration has been developed for noise barriers that can reflect the characteristic of noise barriers. Materials used mainly for soundproof walls were divided into material types for metal, plastic, timber, transparent and concrete. And damage types for noise barrier were classified into corrosion, discoloration, deformation, spalling and dislocation and damage types were subdivided according to the noise barrier's components and materials. Damage rating was divided into good, minor, normal and severe for each major part of noise barrier to assess damage rating of soundproof panel, foundation and post. The deterioration degree of noise barrier was evaluated comprehensively by using the deterioration evaluation method of whole noise barrier using weighted average. Deterioration evaluation method that can be systematically assessed has been developed for noise barrier using single or mixed soundproof panel and noise barrier with single or complex damage types. Through such an evaluation system, it is deemed that the deterioration status of noise barrier installed can be systematically understood and utilized for efficient maintenance planning and implementation for repair and improvement of noise barriers.