• 제목/요약/키워드: concrete slab

검색결과 1,732건 처리시간 0.03초

트러서메쉬 보강 하프 슬래브의 구조적 거동에 관한 실험적 연구 (An Experimental Study on Structural Behavior of Half Slab Reinforced by Truss Mesh)

  • 고만영;김용부;박현수;정란
    • 콘크리트학회지
    • /
    • 제7권4호
    • /
    • pp.119-128
    • /
    • 1995
  • 이 연구는 최근 건설공사에서의 인력 및 원가의 절감, 공기의 단축 등을 도모하기 위하여 도입되고 있는 하프슬래브의 실용화를 위한 구조거동을 알아보기 위한 실험적 연구이다. PC 패널의 두께, 트러스메쉬의 형사, 가력하중의 형태를 변수로 총 17개의 시험체를제작하여 PC 패널, 하프슬래브, 하프슬래브-벽체 접합부의 휨성능 실험을 하였다. 실험결과, 부방향 하중을 받는 PC 패널의 휨강도가 설계강도보다 작게 나타났으나 정방향 하중을 받는 PC판넬과 덧침콘크리트의 분리현상이 발견되지 않았으며 휨강도 또한 일체로 타설한 부재와 같은 휨내력을 발현하였다. 따라서, 본 연구에서는동바리를 2.0-2.5m간격으로 설치하고, PC판넬과 덧침콘크리트와의 접합면을 조면처리하고 청결을 유지하면 사용상 문제가 없는 것으로 판단되었다.

연속 프리캐스트 콘크리트 슬래브궤도에서의 온도하강에 따른 슬래브 이음매 개구량 해석 (Analysis of Slab Joint Opening Due to Temperature Drop in Continuous Precast Concrete Slab Track)

  • 장승엽;이정완
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1659-1663
    • /
    • 2011
  • Precast concrete slab track is a track structure to be installed by transporting and assembling precast concrete slabs manufactured at the factory. This method can improve concrete quality, provide easy maintenance and reduce construction time, compared with in-situ concrete track. However, the concrete slabs being continuously connected in longitudinal direction, due to the temperature change between summer and winter, the openings at slab joints have occurred. Thus, in this study, to identify the cause of this opening of slab joint, the joint opening caused by temperature drop in the longitudinally continuous precast concrete slab track has been predicted using three-dimensional finite element analysis, and compared with field measurements. Based on the proven model, the slab joint opening, and the stress pattern of concrete slab and steel reinforcement according to concrete slab-base friction properties, concrete-reinforcement bond properties, and prestressing were analyzed.

  • PDF

Stability analysis on the concrete slab of the highest concrete-faced rock-fill dam in South Korea

  • Baak, Seung-Hyung;Cho, Gye-Chun;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • 제13권5호
    • /
    • pp.881-892
    • /
    • 2017
  • Design and management of concrete slabs in concrete-faced rock-fill dams are crucial issues for stability and overall dam safety since cracks in the concrete face induced by stress, shrinkage, and deterioration can cause severe leakage from the reservoir into the dam. Especially, the increase of dam height to a certain level to enhance the storage capacity and to improve hydraulic stability can lead to undesirable deformation behavior and stress distribution in the existing dam body and in the concrete slabs. In such conditions, simulation of a concrete slab with a numerical method should involve the use of an interface element because the behavior of the concrete slab does not follow the behavior of the dam body when the dam body settles due to the increase of dam height. However, the interfacial properties between the dam body and the concrete slab have yet to be clearly defined. In this study, construction sequence of a 125 m high CFRD in South Korea is simulated with commercial FDM software. The proper interfacial properties of the concrete slab are estimated based on a comparison to monitored vertical displacement history obtained from the concrete slab. Possibility of shear strength failure under the critical condition is investigated based on the simplified model. Results present the significance of the interfacial properties of the concrete slab.

A new type notched slab approach for timber-concrete composite construction: Experimental and numerical investigation

  • Yilmaz, Semih;Karahasan, Olguhan Sevket;Altunisik, Ahmet Can;Vural, Nilhan;Demir, Serhat
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.737-750
    • /
    • 2022
  • Timber-Concrete Composite construction system consists of combining timber beam or deck and concrete with different connectors. Different fastener types are used in Timber-Concrete Composite systems. In this paper, the effects of two types of fasteners on structural behavior are compared. First, the notches were opened on timber beam, and combined with reinforced concrete slab by fasteners. This system is called as Notched Connection System. Then, timber beam and reinforced concrete slab were combined by new type designed fasteners in another model. This system is called as Notched-Slab Approach. Two laboratory models were constructed and bending tests were performed to examine the fasteners' effectiveness. Bending test results have shown that heavy damage to concrete slab occurs in Notched Connection System applications and the system becomes unusable. However, in Notched-Slab Approach applications, the damage concentrated on the fastener in the metal notch created in the slab, and no damage occurred in the concrete slab. In addition, non-destructive experimental measurements were conducted to determine the dynamic characteristics. To validate the experimental results, initial finite element models of both systems were constituted in ANSYS software using orthotropic material properties, and numerical dynamic characteristics were calculated. Finite element models of Timber-Concrete Composite systems are updated to minimize the differences by manual model updating procedure using some uncertain parameters such as material properties and boundary conditions.

Benefits of Puddling of Fiber Reinforced UHSC for Enhanced Transmission of Column Loads

  • Lee, Joo-Ha;Kim, Gyu-Dong;Yoon, Young-Soo
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.75-78
    • /
    • 2005
  • This study reports on the structural characteristics of slab-column connections using an ultra-high-strength-fiber-reinforced concrete. Compression tests were performed on two slab-column and four isolated column specimens. During the column load tests were performing on the slab-column specimens, the slab loads were also applied to consider actual confinement condition at the slab-column joint. The main parameter investigated was the ' puddling ' of ultra-high-strength-fiber-reinforced concrete. This paper also investigates the effects of some parameters on slab-column specimens and isolated column specimens without the surrounding slab for their ability to transmit axial loads from the ultra-high-strength concrete columns through slab-column connections. The beneficial effects of the ultra-high-strength-fiber-reinforced concrete puddling on the transmission of column loads through slab-column connections are demonstrated.

  • PDF

차수벽 콘크리트 시공성 향상에 관한 연구 (Improvement of Construction Efficiency of Face Slab Concrete)

  • 김완영;정우성;임정열;원종필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.289-292
    • /
    • 2003
  • CFRD face slab concrete has a much capability to occur crack due to drying shrinkage and vibrator compaction etc. Because crack of concrete induces structural problem and decrease durability of concrete, it is need to reduce crack of concrete. In the experimental study it was analyzed that the effect of curing of concrete and compaction on CFRD face slab concrete. As a results, it was found that control of construction condition into curing of concrete and compaction improved on construction efficiency of face slab concrete.

  • PDF

개선된 미소면 모델을 적용한 매스콘크리트 기초슬래브의 초기균열거동 해석 (Early Age Cracking Analysis of Massive Concrete Base Slab with Enhanced Microplane Model)

  • 이윤;김진근;우상균;송영철;이성태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.458-461
    • /
    • 2006
  • Early age cracking of concrete is a widespread and complicated problem, and diverse applications in practical engineering have focused on this issue. Since massive concrete base slab composes the infrastructure of other concrete structures such as pier, concrete dam, and high rise buildings, early age cracking of that is considered as a crucial problem. In this study, finite element analysis (FEA) implemented with the age-dependent microplane model was performed. For a massive concrete base slab, cracking initiation and propagation, and deformation variation were investigated with concrete age. In massive concrete slab, autogenous shrinkage increases the risk of early age cracking and it reduces reinforcement effect on control of early age cracking. Gradual crack occurrence is experienced from exterior surface towards interior of the slab in case of combined hydration heat and autogenous shrinkage. FEA implemented with enhanced microplane model successfully simulates the typical cracking patterns due to edge restraint in concrete base slab.

  • PDF

철도하중에 대한 콘크리트 슬래브궤도의 피로거동에 관한 실험적 연구 (Experimental Investigation on Fatigue Behavior of Concrete Slab Tracks under Railway Loads)

  • 강보순
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.639-642
    • /
    • 2003
  • In this paper, fatigue behavior of concrete slab tracks under railway loads by experimental method is discussed. The addition of steel fibers to concrete mix has been receiving more attention as a way of improving the crack behavior of concrete beams an slabs tacks. This study two objectives: 1) to observe the fatigue behavior of fiber reinforced concrete slab in labor, and 2) to present crack propagation and deflection of fiber reinforced concrete slab track under railway loads in the Waghauser test line. Nine beams, two slabs and one test track were experimentally tested.

  • PDF

GFRP bar를 휨보강근으로 사용한 경량골재콘크리트 슬래브의 거동에 관한 기초적 연구 (A Fundamental Study for the Behavior of Lightweight Aggregate Concrete Slab Reinforced with GFRP Bar)

  • 전상훈;손병락;김충호;장희석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권3호
    • /
    • pp.99-108
    • /
    • 2012
  • 본 연구에서는 철근콘크리트 슬래브의 내부식성과 경량화를 도모하기 위하여 GFRP bar를 휨보강근으로 사용하는 경량골재콘크리트 슬래브를 고려하고 이 구조물에 대하여 기초적인 거동을 조사하였다. 경량콘크리트의 압축강도 및 인장강도 그리고 콘크리트 파괴에너지 측정, 일련의 슬래브 휨실험, 비선형유한요소해석을 통한 수치해석, 휨실험과 수치해석의 결과비교 등이 행하여졌다. 그 결과, GFRP bar를 휨보강근으로 사용한 경량콘크리트 슬래브는 기준시험체로 사용된 동일 규격의 철근콘크리트 슬래브에 비하여 무게를 28%정도 감소시킬 수 있었지만 파괴하중은 36%정도 감소되었다. 이는 GFRP bar의 낮은 축강성과 경량콘크리트의 낮은 부착강도 때문인 것으로 판단된다. 그리고 경량콘크리트의 부착력 감소 특성을 고려하기 위하여 GFRP bar와 콘크리트 경계면 사이에 계면요소를 사용한 수치해석 결과는 계면요소의 사용이 실험결과에 더 근접해갈 수 있는 방법임을 보여주었다.

자체변형에 의한 부분지지조건을 갖는 콘크리트 슬래브 (Concrete Slab with Partial Supports due to its Deformation)

  • 한승환;유태석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.429-432
    • /
    • 1999
  • The concrete slab on the foundation may have curling and warping deformations due to moisture and temperature gradient of its section. These deformations may change the support conditions of concrete slabs, and cause higher level of stresses than expected. This study was performed to verify the effect of partial support condition of concrete slab on the foundation due to its deformations and to develop the useful analytic method for describing these phenomenons. The partial support condition verified by FWD test results, and it was concluded that the gap model could be useful in analysing the concrete slab with partial support conditions.

  • PDF