• Title/Summary/Keyword: concrete road

Search Result 1,003, Processing Time 0.029 seconds

A Study on the Environmental Radiation of Concrete Apartments and Neighborhood Living Facilities (콘크리트 공동주택과 근린생활 시설의 환경방사선에 관한 연구)

  • Ji, Tae-Jeong;Kwak, Byung-Joon;Min, Byung-In
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.100-104
    • /
    • 2009
  • In this study, the space gamma dose rates in the apartments structured with concrete were measured in accordance with construction year. In addition, the environmental radiation rates coming from the subway platforms and the road tunnels were analyzed in the equivalent dose by multiplying the absorbed dose with the radiation weighting factors. The space gamma dose rates measured in apartments were higher than those of outdoor which was $0.08{\sim}0.11uSv/h$ in the natural conditions. Especially, the older construction year is, the higher becomes space gamma dose rate. The average gamma dose rates in the subway platforms were measured. In the case of Busan and Daegu subway, the earlier the opening year is, the higher becomes dose rate. However, the dose rates of Seoul subway Lines were high overall, regardless of opening year. Seoul subway Line 6 showed the highest value of 0.21uSv/h. The gamma dose rate in road tunnels was higher than one of the outdoor and increased with opening year like as apartment. In dose rate comparison of the concrete structures with the outdoor, therefore, the space gamma dose rate of indoor is higher than one of the outdoor and the older structures have a higher dose rate.

A Study on the Application of Very Rapid Hardening Acrylic Polymer Modified Concrete for Bonded Concrete Overlay Method (접착식 콘크리트 덧씌우기 공법을 위한 초속경 아크릴계 폴리머 개질 콘크리트의 적용성 연구)

  • Lee, Seung-Woo;Kim, Young-Kyu;Lee, Poong-Hee
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.139-148
    • /
    • 2011
  • Asphalt concrete overlay method is used by general maintenance and rehabilitation of construction for aged concrete pavement in Korea. However, in case of the AC overlay method to extend service life of the existing concrete pavements, various distresses of reflection crack, pothole and rutting are the typical problems of the asphalt overlay on existing concrete pavement since it has different physical characteristics between asphalt overlay and existing concrete pavement. To achieve this, application of concrete overlay method is required instead of AC overlay method. Concrete overlay method has advantages that can reduce maintenance cycle and costs since it has excellent bearing value for heavy vehicles and no rutting. However, technical problems of detour road construction, traffic control and other disadvantages happened by long curing time. Thus, in this study and experimental research were launched to evaluate the workability, durability and resistance against environmental loading of Very Rapid Hardening Acrylic Polymer Modified Concrete(VRH-APMC) for application of bonded concrete overlay method. Test results showed that the compressive and bond strength were exceed 21MPa and 1.4MPa of target strength after four hours for rapid traffic opening properties. And tests of resistance against environmental loading results showed that VRH-APMC secured excellent durability. Thus, it was known that VRH-APMC was suitable material for large scale bonded concrete overlay method, and it was possible to use maintenance and rehabilitation method which needs enough workability and rapid traffic opening.

Development of the Program Road lighting Road Surface Property Measuring Apparatus (도로 조명용 프로그램과 노면특성 장치의 개발)

  • Kim, Gi-Hoon;Sim, Sang-Man;Kim, Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.1-6
    • /
    • 1999
  • Average illuminaoce and luminance can be calculated by grarhical rrethods to a certain extent, but to calculate for a wide place, a suitable software is needed. Softwares suitable for this purpose have been already developed in foreign nations, but the appropiate softwares for domestic use have not been developed 1berefore a program is develqJed which is executable in Hangul Windows. The softwares LAPRoad, is develqJed to calculate luminaoce and illuminance distribution of road surlace, as well as average luminance and illuminance, overall uniformity, longitudinal uniformity, threshold increement, veilling luminance, and glare. And an apparatus that measures road surface reflection properties is developed. Because the road surlace reflection properties is very important in luminance calculation, then concrete road surlace reflection properties were measered.asered.

  • PDF

Performance Evaluation of Bonded Concrete Overlay in Highway (고속도로 접착식 콘크리트 덧씌우기 포장의 공용성 분석)

  • Park, Jong Won;Kim, Young Kyu;Han, Seung Hwan;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • PURPOSES : This study aimed to evaluate the long-term performance of bonded concrete overlay in Korean Highway, and factors influencing the performances. METHODS : The evaluation for long-term performance of bonded concrete overlay is investigated based on the following study : i) The pavement distress of number of bonded concrete overlay sections in Korean highway are collected through field measurement, and PCI for each section is calculated. ii) Performance of LTPP data of bonded concrete overlay sections in U.S.A is analysed. And it is compared with bonded concrete overlay of Korean highway. iii) An analysis of the factors influencing to long-term performance of bonded concrete overlay is investigated. RESULTS : Performance analysis was confirmed that the overlay thickness was affecting significantly on the Bonded Concrete Overlay life. The comparison of LTPP data(U.S.A) and field measurement data(Korean) was showed. CONCLUSIONS : It was showed that the performance of Korean bonded concrete overlay is relatively lower than that of the bonded concrete overlay in U.S.A. The cause of lower performance can be explained by the lack of overlay thickness.

Combined effect of fine aggregate and silica fume on properties of Portland cement pervious concrete

  • Zhang, Yuanbo;Zhang, Wuman;Zhang, Yingchen
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • Portland cement pervious concrete has been expected to have good water permeability, mechanical properties and abrasion resistance at the same time when Portland cement pervious concrete is applied to the actual vehicle pavement. In this study, the coarse aggregate and cement were replaced by the fine aggregate and the silica fume to improve actual road performance Portland cement pervious concrete. The Mechanical properties, the water permeability and the abrasion resistance of Portland cement pervious concrete were investigated. The results show that the compressive strength, the flexural strength and the abrasion resistance are increased when the fine aggregate and the silica fume are added to Portland cement pervious concrete separately. However, the porosity and the water permeability are decreased simultaneously. With assistance of silica fume and fine aggregate simultaneously, Portland cement pervious concrete could achieve a higher strength. The compressive strength, the flexural strength and the abrasion resistance of Portland cement pervious concrete mixed with 5% fine aggregates and 8% silica fume are increased by 93.1%, 65% and 65.2%, respectively. The porosity and the water permeability are decreased by 22.4% and 85% when Portland cement pervious concrete is mixed with 5% fine aggregate and 8% silica fume. Therefore, the replacement ratio of the fine aggregates and the silica fume should be considered comprehensively and determined on the premise of ensuring the water permeability coefficient.

Analysis of effects of shrinkage of concrete added to widen RC girder bridge

  • Madaj, Arkadiusz;Siekierski, Wojciech
    • Computers and Concrete
    • /
    • v.23 no.5
    • /
    • pp.329-334
    • /
    • 2019
  • Traffic flow capacity of some old road bridges is insufficient due to limited deck width. In such cases bridge deck widening is a common solution. For multi-girder reinforced concrete (RC) bridges it is possible to add steel-concrete composite girders as the new outermost girders. The deck widening may be combined with bridge strengthening thanks to thickening of the existing deck slab. Joint action of the existing and the added parts of such bridge span must be ensured. It refers especially to the horizontal plane at the interface of the existing slab and the added concrete layer as well as to the vertical planes at the external surfaces of the initially outermost girders where the added girders are connected to the existing bridge span. Since the distribution of the added concrete is non-uniform in the span cross-section the structure is particularly sensitive to the added concrete shrinkage. The shrinkage induces shear forces in the aforementioned planes. Widening of a 12 m long RC multi-girder bridge span is numerically analysed to assess the influence of the added concrete shrinkage. The analysis results show that: a) in the vertical plane of the connection of the added and the existing deck slab the longitudinal shear due to the shrinkage of the added concrete is comparable with the effect of live load, b) it is necessary to provide appropriate longitudinal reinforcement in the deck slab over the added girders due to tension induced by the shrinkage of the added concrete.

Evaluation of State of Concrete Pavement Sublayers Considering Direction of FWD (FWD 방향을 고려한 콘크리트 포장 하부 상태 평가)

  • Lee, Jae Hoon;Lee, Jae Hoon;Sohn, Dueck Su;Liu, Ju Ho;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.69-78
    • /
    • 2014
  • PURPOSES : The purpose of this paper is showing that the state of pavement sublayers can be evaluated differently according to direction of FWD. METHODS : The concrete pavement slabs above subgrade without anything, subgrade with cavity, and box culvert were modeled by finite element method(FEM). The modeled pavements were analyzed by changing the direction of falling weight deflectometer(FWD). The deflection results obtained from FEM were used to calculate radius of relative stiffness and composite modulus of subgrade reaction using AREA method. Then, the analyzed results were compared to the results of the test performed at the Korea Expressway Corporation(KEC) test road. RESULTS : The composite modulus of subgrade reaction increased with subgrade elastic modulus, while radius of relative stiffness decreased. The pavement sections of pure earth showed the consistent results regardless of FWD direction. In case there was cavity, the radius of relative stiffness was larger and composite modulus of subgrade reaction was smaller when FWD was leaving the cavity than when approaching the cavity. This pattern became clear when the cavity got larger. In case of the section with box culvert, the pattern was opposite to the case of cavity. When the soil cover depth increased, the effect of box culvert got smaller. When the load was applied far from the cavity and box culvert, the effect was also declined. The test performed at the KEC test road showed identical results to those of finite element analysis. CONCLUSIONS : The direction of FWD should be considered in evaluation of the state of pavement sublayers because it can be evaluated differently even under identical condition.

Fundamental Properties of Mortar and Concrete Using Waste foundry Sand

  • Moon Han-Young;Choi Yun-Wang;Song Yong-Kyu;Jeon Jung-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.141-147
    • /
    • 2005
  • The development of automobile, vessel, rail road, and machine industry leads an increase of foundry production used as their components, which cause a by-product, waste foundry sand (WFS). The amount of the WFS produced in Korea is over 700,000 tons a year, but most WFS has been buried itself and only $5{\~}6\%$ WFS is recycled as construction materials. Therefore, it is necessary for most WFS to research other ways which can be used in a higher value added product. The study on recycling it as a fine aggregate for concrete or green sand has been in progress in America and Japan since 1970s and 1980s respaectively. In this study, two types of WFS were used as a fine aggregate for concrete. Nine types of concrete aimed at the specified strength of 30 MPa were mixed with washed seashore coarse sand in which salt was removed, and WFS and then appropriate mixture proportion of concrete was determined. Moreover, basic properties such as air contents, setting time, bleeding, workability and slump loss of the fresh concrete with WFS were tested and compared with those of the concrete mixed without WFS. In addition, both compressive strength of hardened concrete at each ages and tensile strength of it at the age of 28 days were measured and discussed.

Experimental Study on the Frost Resistance of Concete Product (콘크리트제품의 동결저항성에 관한 실험적 연구)

  • Sugawara, Takashi;Tsukinaga, Yhoichi;Lee, Sanghun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.91-91
    • /
    • 2011
  • The quality of the surface layer in concrete structures plays an important role in the durability of the concrete. The concrete factory products are made as they improve the appearance of the surface and compressive strength in need. A common criterion to judge the quality of concrete products frequently seen in our daily life appears to be "beauty" in terms of consistent shaping. However, as for most concrete curb in such areas where a large amount of anti-freezing agents(NaCl) and ice and snow melting agents(CaCl2) are spread over roads to ensure road safety during the winter season, since deterioration advances from the surface, scaling is seen on the surface concrete due to deterioration which combined freezing damage and salt damage. Especially, In cold northern districts, the spreading amount of deicing salts increases by regulation of studded tire use, and the scaling of the concrete products, the various parts of concrete structures for roads is increasing in recent years. In this study, L-shape concrete curb were targeted, the permeable form method with the commercial permeable sheet was applied to it and the improvements of the quality were examined. By the permeable form method, surface layers got strengthened, which prevented permeation of the deterioration factor from the outside, and the scaling resistance of the upper surface where the permeable sheet was applied improved exceedingly. It will be expected by applying the permeable form method to various concrete products that frost resistance improves and scaling damage decreases.

  • PDF

Experimental Study to Investigate the Factors Affecting Durability of Spalled Cement Concrete Pavements (스폴링이 발생한 콘크리트 포장의 내구성 영향인자 조사를 위한 실험적 연구)

  • Yoo, Tae Seok;Ryu, SungWoo;Kim, Jin Cheol
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.27-34
    • /
    • 2018
  • PURPOSES : It is necessary to prevent premature failure of concrete pavements caused by durability problems. The purpose of this study was to find factors affecting the durability of concrete pavements, and suggest improvement methods for existing concrete mix design. METHODS : Factors influencing durability were derived from laboratory test data for common field failure conditions and main properties of concrete cores taken from the field. The improvement of concrete properties was investigated by evaluating the performance of existing and proposed mix proportion designs and curing methods. RESULTS : The compressive strength and the absorbing performance of the low Blaine cement and the high-strength mixture were better than those of the Type I cement. Wet curing showed better compressive strength, elastic modulus, coefficient of thermal expansion, and absorption performance than air curing or compound curing. As a result of comparing concrete cores collected in the field, the sections with good durability showed good performance in terms of resistance to chloride ion penetration, absorption, and initial absorption rate. CONCLUSIONS : The absorption performance was considered as a possible foactor affecting durability of cement concrete pavements as a result of field core tests. In order to improve the durability of the pavement concrete, it is necessary to improve the existing mixtures and curing methods.