• Title/Summary/Keyword: concrete plates

Search Result 533, Processing Time 0.02 seconds

Strengthening of reinforced concrete beams with epoxy-bonded perforated steel plates

  • Aykac, Sabahattin;Kalkan, Ilker;Uysal, Ali
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.735-751
    • /
    • 2012
  • Although being one of the most popular strengthening techniques in reinforced concrete beams, the use of steel plates bonded to the soffit raises problems of ductility. This study aims at investigating the influence of the use of perforated steel plates instead of solid steel plates on the ductility of reinforced concrete beams. A total of nine reinforced concrete beams were tested. In addition to an unplated beam, eight beams with perforated steel plates of two different thicknesses (3 mm and 6 mm) were subjected to monotonic loading. Effect of bonding the plates to the beams with anchor bolts and with additional side plates bonded to the sides of the beam with and without anchors is also investigated. The use of bolts in addition to epoxy was found to greatly contribute to the ductility and energy absorption capacity of the beams, particularly in specimens with thick plates (6 mm) and the use side plates in addition to the bottom plate was found to be ineffective in increasing the ductility of a concrete beam unless the side plates are attached to the beam with anchors bolts. The thickness of the plate was found to have little effect on the bending rigidity of the beam.

Methods of punching shear strength analysis of reinforced concrete flat plates-A comparative study

  • Loo, Y.C.;Chiang, C.L.
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.75-86
    • /
    • 1993
  • The punching shear strength of concrete flat plates is one of the topics of intensive research in recent years by various concrete structures researchers. This paper reviews four current methods of analysing the punching shear strength at the corner-and edge-column positions of reinforced concrete flat plates. They include those recommended in the Australian Standard AS3600-1988, the American Concrete Institute ACI318-89 and the British Standard on Concrete Practices (BS8110) as well as the approach developed at the University of Wollongong, Australia. Based on half-scale model test results, a comparative study of these four analysis methods is made with regard to their limitation, accuracy and reliability. It is found that the Wollongong approach in general gives the best performance in predicting the punching shear strength of flat plates with torsion strips and those with spandrel beams. The Australian Standard procedure performs just as satisfactorily for flat plates with torsion strips but tends to be unsafe for those with spandrel beams. Both the ACI and the British methods are applicable only to flat plates with torsion strips; they also tend to give unsafe predictions for the punching shear strength.

Assessment of Bond-Slip Interface Model with Concrete and CFRP Plates (콘크리트와 탐소섬유판 계면의 본드-슬립모델 산정)

  • Yang Dong suk;Koh Byung Soon;Park Sun Kyu;You Young Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.635-638
    • /
    • 2004
  • External bonding of steel plates has been used to strengthen deficient reinforced-concrete structures since the 1960s. In recent years, fiber-reinforcde polymer(FRP) plates have been increasingly used to replace steel plates due to their superior properties. This paper is concerned with anchorage failure due to crack propagation parallel to the boned plated near or along the adhesive/concrete interface, staring from the critically stressed position toward the anchored end of the plates. Factor of bond-slip interface model is average bond stress, effective length, slip volume and fracture energy. The aim of the present paper is to provide a comprehensive assessment of bond-slip interface model with concrete and CFRP plates.

  • PDF

Investigation of the effects of connectors to enhance bond strength of externally bonded steel plates and CFRP laminates with concrete

  • Jabbar, Ali Sami Abdul;Alam, Md Ashraful;Mustapha, Kamal Nasharuddin
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1275-1303
    • /
    • 2016
  • Steel plates and carbon-fiber-reinforced polymer (CFRP) laminates or plates bonded to concrete substrates have been widely used for concrete strengthening. However, this technique cause plate debonding, which makes the strengthening system inefficient. The main objective of this study is to enhance the bond strength of externally bonded steel plates and CFRP laminates to the concrete surface by proposing new embedded adhesive and steel connectors. The effects of these new embedded connectors were investigated through the tests on 36 prism specimens. Parameters such as interfacial shear stress, fracture energy and the maximum strains in plates were also determined in this study and compared with the maximum value of debonding stresses using a relevant failure criterion by means of pullout test. The study indicates that the interfacial bond strength between the externally bonded plates and concrete can be increased remarkably by using these connectors. The investigation verifies that steel connectors increase the shear bond strength by 48% compared to 38% for the adhesive connectors. Thus, steel connectors are more effective than adhesive connectors in increasing shear bond strength. Results also show that the use of double connectors significantly increases interfacial shear stress and decrease debonding failure. Finally, a new proposed formula is modified to predict the maximum bond strength of steel plates and CFRP laminates adhesively glued to concrete in the presence of the embedded connectors.

Bond behavior between concrete and prefabricated Ultra High-Performance Fiber-Reinforced Concrete (UHPFRC) plates

  • Mansour, Walid;Sakr, Mohammed A.;Seleemah, Ayman A.;Tayeh, Bassam A.;Khalifa, Tarek M.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.305-316
    • /
    • 2022
  • Externally bonded ultrahigh performance fiber-reinforced concrete (UHPFRC) is commonly used as a strengthening material for reinforced concrete (RC) structures. This study reports the results of an experimental program investigating the bonding behavior between concrete and prefabricated UHPFRC plates. The overall experimental program is consisting of five RC specimens, which are strengthened using the different lengths and widths of prefabricated UHPFRC plates. These specimens were analyzed using the pull-pull double-shear test. The performance of each strengthened specimen is presented, discussed and compared in terms of failure mode, maximum load, load-slip relationship, fracture energy and strain distribution. Specimen C-25-160-300 which bonded along the whole width of 160 mm recorded the highest maximum load (109.2 kN) among all the analysed specimens. Moreover, a 3D numerical finite element model (FEM) is proposed to simulate the bond behavior between concrete and UHPFRC plates. Moreover, this study reviews the analytical models that can predict the relationship between the maximum bond stress and slip for strengthened concrete elements. The proposed FEM is verified against the experimental program and then used to test 36 RC specimens strengthened with prefabricated UHPFRC plates with different concrete grades and UHPFRC plate widths. The obtained results together with the review of analytical models helped in the formation of a design equation for estimating the bond stress between concrete and prefabricated UHPFRC plates.

Stfuctural Behavior of Cracked Reinforced Concrete Beams Strengthened by Epoxy Bonded Steel Plates(EBSP) (에폭시 접착강판으로 보강된 철근콘크리트보의 구조적 거동에 관한 연구)

  • 김유식;류해준;최완철;홍기섭;신영수;홍영균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.25-29
    • /
    • 1994
  • A series of 6 reinforced concrete beams was tested to verify the effects of EBSP strengthened on cracked beams and to identify the various parameters affecting structure strengthening design(SSD). The parameters were the cross-sectional area of steel plates, the thickness of steel plates, and bond length of steel plates. In addition to these parameters, the effect of existing cracks on the strengthening was investigated. Test results show that EBSP is very effective and predictable for strengthening damaged structures. The results also show that the bond length of steel plates is the most important factor to develop ultimate load carrying capacities of strengthened beams. However, considerations in SSD should be given to assure the ductile failure at ultimate load such as the low ratio of thickness to the width of plates.

  • PDF

Behavior of high-strength fiber reinforced concrete plates under in-plane and transverse loads

  • Ramadoss, P.;Nagamani, K.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.371-382
    • /
    • 2009
  • The concrete plates are most widely used structural elements in the hulls of floating concrete structures such as concrete barges and pontoons, bridge decks, basement floors and liquid storage tanks. The study on the behavior of high-strength fiber reinforced concrete (HSFRC) plates was carried out to evaluate the performance of plates under in-plane and transverse loads. The plates were tested in simply supported along all the four edges and subjected to in-plane and traverse loads. In this experimental program, twenty four 150 mm diameter cylinders and twelve plate elements of size $600{\times}600{\times}30$ mm were prepared and tested. Water-to-cementitious materials ratios of 0.3 and 0.4 with 10% and 15% silica fume replacements were used in the concrete mixes. The fiber volume fractions, $V_f$ = 0%, 1% and 1.5% with an aspect ratio of 80 were used in this study. The HSFRC mixes had the concrete compressive strengths in the range of 52.5 to 70 MPa, flexural strengths ranging from 6.21 to 11.08 MPa and static modulus of elasticity ranging from 29.68 to 36.79 GPa. In this study, the behavior of HSFRC plate elements subjected to combined uniaxial in-plane and transverse loads was investigated.

Reinforced Concrete Flat plates Under Combined In-plane and Out-of-plane Loads (바닥하중 및 면내압축력을 받는 플렛 플에이트 슬래브)

  • 박홍근;김의회;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.424-429
    • /
    • 1998
  • Numerical studies are performed to investigate the behavior of flat plates under combined in-plane and out-of-plane loads. The numerical model is verified by comparison with experiments for plates simply supported on four edges. Through study on different load combination and loading sequence, the critical load condition that governs the strength of the flat plate is determined. Parametric studies are performed to investigate the buckling coefficient and the effective flexural rigidity so that the moment magnification method is applicable to the flat plates.

  • PDF

An Experimental Study on Shear-Strengthening Effect of Reinforced Concrete Beams by Steel Plates and GFS (강판 및 유리섬유쉬트로 보강된 철근콘크리트 보의 전단보강 효과에 관한 실험 연구)

  • 최현구;오성영;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.739-744
    • /
    • 2000
  • The aim of this research is to investigate and to compare the shear strengthening effects of steel plates and glass fiber sheets(GFS). Shear damaged beams were repaired by steel plates and GFS. Thickness of steel plates and strengthening type of GFS were taken as the parameters. With loading, the development and propagation of cracks, failure mode and deformation of strengthening materials were checked. The ultimate load was compared with formulas proposed by previous researchers.

  • PDF

The effect of CFRP-concrete bond mechanism on dynamic parameters of repaired concrete girders

  • Fayyadh, Moatasem M.;Razak, Hashim A.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.343-354
    • /
    • 2022
  • An understanding of the mechanism of concrete girders repaired with CFRP plates and its influence on the dynamic parameters is presented in this paper. Dynamic parameters are governed by the relationship with the physical properties of concrete girders and CFRP plates as well as the adhesive layer between them. A brief explanation of the mechanism of the composite action of concrete girders repaired with CFRP is also given in this paper. Experimental work was carried out to validate the theory of the composite action. The results show a decrease in the modal parameters of CFRP repaired girders that were turned over during the repair procedure, which contrasts with the proven static-based results that CFRP plates increase the stiffness of repaired girders. The composite action theory has explained the results based on the tension and compression forces' growth at the adhesive layer between the CFRP plates and girder surface during the repair procedure. Other girders were prepared and repaired without turning over in order to avoid tension and compression forces at the adhesive layer. The experimental results show an increase in the dynamic parameters of CFRP repaired girders that were not turned over during the repair procedure, which aligns with the static-based results. The study concludes that the dynamic parameters are excellent indicators for the assessment of CFRP repaired concrete girders. The study also suggests that researchers should not turn over damaged concrete girders to repair them with CFRP plates if they intend to study the dynamic parameters, in order to avoid the proposed composite action effect on modal parameters.