• Title/Summary/Keyword: concrete pavements

Search Result 311, Processing Time 0.02 seconds

Fundamental Study on Development of Sealants used for WIM Sensor Installation (WIM 센서 설치에 적합한 실런트 개발을 위한 기초적인 연구)

  • Lim, Chisoo;Kim, Du-Byung;Kim, Yongjoo;Lee, Kanghun;Lee, Jaejun
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.17-24
    • /
    • 2017
  • PURPOSES : This study aims to develop a sealant for use in the installation of Weigh-In-Motion (WIM) sensor for asphalt concrete or cement concrete pavements. METHODS : In order to investigate the properties of various sealants that were mixed with latex and carbon fiber, various test methods were adopted, such as bituminous bond strength test, softening point test, and cone penetration test. To evaluate moisture susceptibility, the BBS test was conducted under moist condition. The bond strength ratio (BSR) was calculated based on tensile strength ratio method. RESULTS : The sealant's properties significantly varied according to the amount of latex or carbon fiber. The usage of latex marginally enhanced the cone penetration test result, notwithstanding reduced asphalt content. This implies that the sealant will be proper cold temperature reason. Moreover, the addition of latex and carbon fiber evidently increased the softening point. This indicates that the tendency of the material to flow at elevated temperatures is encountered during service. With the addition of latex and carbon fiber, the moisture susceptibility measured with BSR improved marginally, while the bond strength under dry condition decreased marginally. Sealant F displays the highest bond strength and BSR under limited test conditions. CONCLUSIONS : According to the proportion of latex and carbon fiber mixed, properties of sealant, such as softening point, cone penetration, and BSR varied marginally. This indicates that the sealant has to be applied considering the environmental condition, to improve service life.

Development of Tire/Pavement Noise Simulator (도로포장면과 타이어간의 소음 재현장비의 개발)

  • Kim, Young-Kyu;Lee, Seung-Woo;Yoo, Tae-Seok
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.51-62
    • /
    • 2007
  • Recently various low-noise-pavement methods have been developed. Since tire/pavement noise is the major source of traffic noise at high speed condition, the core-technology of low-noise pavement is to produce the road surface texture that can reduce tire/pavement noise. The difficulties in the development of the low-noise pavements are high costs and time to construct test roads, since vehicles have to travel on the test roads to evaluate the noise from a particular condition of pavement surface. Tire/Pavement Noise Simulator were developed to overcome those difficulties and the reliability of developed Tire/Pavement Noise Simulator are investigated based on the simulating and measuring the noise of tire-tined concrete pavement and tire-non tined concrete pavement.

  • PDF

Evaluation of Functional and Structural Performance of Semi Rigid Overlay Pavements (반강성 덧씌우기 포장의 기능적 및 구조적 성능 평가)

  • Park, Kang Yong;Lee, Jae Jun;Kwon, Soo Ahn;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.271-278
    • /
    • 2010
  • Semi rigid pavement is a pavement type using advantages of both flexibility of asphalt pavement and rigidity of concrete pavement by infiltrating cement paste into voids of open graded asphalt mixtures. The semi rigid pavement has better smoothness and smaller driving vibration or noise comparing to the concrete pavement, and has smaller permanent deformation and has temperature falling effect comparing to the asphalt pavement. The temperature falling effect were investigated at a semi rigid overlay pavement test section, and the temperature falling and water retaining effects were verified by measuring the temperature and weight of specimens at a housetop. Horizontal and vertical stresses and strains were compared by structural analysis of the semi rigid pavement and asphalt pavement using the Abaquser o, a commercial 3D finite element analysis program. The results were verified by Bisar 3.0, a multi-layered elastic analysis program. Performance of the semi rigid pavement and asphalt pavement were compared by predicting fatigue cracking based on the structural analysis results.

Evaluation of Basic Properties of Methyl Methacrylate (MMA) as a Road Repair Material (Methyl Methacrylate(MMA)계 도로보수재의 기초 물성 평가)

  • Choi, Byung-Cheol;Kim, Gyu-Yong;Pyeon, Su-Jeong;Ji, Sung-Jun;Eu, Ha-Min;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.109-110
    • /
    • 2023
  • Domestic ultra-hard road repair materials require a lot of time before the road can be opened to traffic. Therefore, in this study, Methyl Methacrylate (MMA) based road repair material was used to improve the above problems. Furthermore, the basic physical properties of MMA-based pavement repair materials are examined to confirm their suitability in concrete pavements. For this study, two types of MMA road repair materials (A type and B type) were selected. Then, the curing of the test specimens prepared for painting was carried out under three conditions. The experimental items were viscosity (drop time) and drying time (set to touch, dry-hard). As a result of the experiment, viscosity (drop time) was faster in type A than in type B. The drying time results were as follows. In the case of set ti touch, both type A and type B dried in about 10 minutes regardless of the curing conditions. In the case of dry-hard, regardless of the curing conditions, A type dried longer than B type, but it dried faster than conventional road repair materials. Therefore, within the scope of this study, it is considered that A type has a high potential for utilization as a road repair material.

  • PDF

Development of a Procedure for Remaining Life Estimation in Airfield Concrete Pavement (공항 콘크리트 포장의 잔존수명 산출 논리 개선 연구)

  • Kwon Soo-Ahn;Suh Young-Chan;Cho Yong-Joo
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.131-138
    • /
    • 2006
  • Methods of back calculation for either design procedures or elastic moduli obtained from FWD(Falling Weight Deflectometer) tests have widely been used to predict remaining life of airfield concrete pavements. Since the variation of the elastic modulus obtained from the FWD test depends on the back calculation methods, prediction of remaining life of airfield pavement using the back calculation method has not been reliable. In addition, the FWD method only concentrates on the structural integrity of the pavement without considering functional distress. In this study, a newly developed remaining life estimation procedure is proposed. This methodology includes both structural and functional consideration and suggests models and decision criteria for each stage. In order to improve the estimation procedure on remaining life of pavement, conducted the several tests on an old airfield concrete pavement. As a result, it is concluded that the load transfer efficiency on joint is better for predicting remaining life of pavement than the elastic modulus, which is commonly used. In order to verify applicability of the newly developed estimation procedure and detailed models, investigation and analysis were conducted according to the new methodology on C-airfield pavement. Finally, it is confirmed that the efficiency of the proposed method for practical application was good enough.

  • PDF

Development of Mechanistic-empirical Joint Spacing Design Method for Concrete Pavements (역학적-경험적 콘크리트 포장 줄눈간격 설계방법 개발)

  • Park, Joo-Young;Hong, Dong-Seong;Lim, Jin-Sun;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.51-59
    • /
    • 2011
  • Tensile stress occurs and random crack develops in concrete pavement slab when it contracts by variation of temperature and humidity. The tensile stress decreases and the random crack is minimized by sawcutting the slab and inducing the crack with regular spacing. The random crack, joint damage, decrease of load transfer efficiency are caused by too wide joint spacing while too narrow joint spacing leads to increase of construction cost and decrease of comfort. A mechanistic-empirical joint spacing design method for the concrete pavement was developed in this study. Structurally and environmentally weakest sections were found among the sections showing good performance, and design strengths were determined by finite element analysis on the sections. The joint width for which the load transfer efficiency is suddenly lowered was determined as allowable joint with referring to existing research results. The maximum joint spacing for which the maximum tensile stress calculated by the finite element analysis did not exceed the design strength were found. And the maximum joint width expected by the maximum joint spacing were compared to the allowable joint width. The new method developed in this study was applied to two zones of Hamyang-Woolsan Expressway being designed. The same joint spacing as a test section constructed by 8.0m of joint spacing wider than usual was calculated by the design method. Very low cracking measured at 6 years after opening of the test section verified the design method developed in this study.

Behavior of Overlaid Concrete Pavements under Multi-Axle Vehicle Loads Obtained Using Transformed Field Domain Analysis (변환영역 해석법을 이용한 덧씌우기 된 콘크리트 도로 포장의 다축차륜하중에 대한 거동 분석)

  • An, Zu-Og;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.63-76
    • /
    • 2007
  • The transformed field domain analysis method was developed in this study to investigate the aspects of the stress distribution in overlaid concrete pavement systems under multi-axle vehicle loads. The overlay was assumed to be perfectly bonded or perfectly unbonded to the existing concrete pavement. The loads considered included the dual tired single-axle, tandem-axle, and tridem-axle loads, and the effects of the overlay's thickness, elastic modulus, and Poisson's ratio on the stress distribution were investigated. Details of the analysis method in the transformed field domain to analyze the overlaid pavement was described in this paper and the analysis results were verified by comparing with those obtained using the finite element method. From the analysis, it was found that the maximum tensile stress in the existing slab decreased as the overlay's thickness, elastic modulus, and Poisson's ratio increased, and the bonded overlay showed more significant effects than the unbonded one. The overlay's Poisson's ratio did not much affect the stresses, and the features of the maximum stress reduction in the existing slab due to the increase of the thickness, elastic modulus, and Poisson's ratio of the overlay were investigated. The effects of the number of axles on the stress distribution and the maximum stress were also investigated.

  • PDF

Investigation of the Bond and Deformation Characteristics between an Asphalt layer and a Concrete Slab used as the Trackbed Foundation of an Embedded Rail System for Wireless Trams (무가선 트램용 매립형궤도 아스팔트 포장층의 부착특성 및 변형발생특성 분석)

  • Cho, Hojin;Kang, Yunsuk;Lee, Suhyung;Park, Jeabeom;Lim, Yujin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.224-233
    • /
    • 2016
  • Embedded Railway Systems (ERS) will be adapted for wireless trams and will be constructed along city roadways. An asphalt layer should be overlaid on top of the concrete slab used as the trackbed structure in order to ensure smoothness and surface levels equal to those of existing road pavement in downtown city areas. However, the characteristics of an asphalt layer when used as overlay pavement for an ERS are complicated and the behavior of this material is not yet well defined and understood. Therefore, in this study, laboratory shear and tensile bond strength tests were conducted to investigate the bonding behavior of an asphalt layer in a multilayered trackbed section of an ERS. For the laboratory tests, a waterproof coating material was selected as a bonding material between the asphalt overlay and a concrete specimen. Valuable design parameters could be obtained based on the tensile and shear bond strength test results, providing information about the serviceability and durability of the overlaid pavements to be constructed alongside the ERS for wireless trams. In addition, a deformation analysis to assess the tensile strain generated due to truck axle loads at the interface between the asphalt layer and the concrete slab was conducted to verify the stability and performance of the asphalt layer.

A Consideration on the Electromagnetic Properties of Road Pavement Using Ground Penetrating Radar (GPR) (지표투과레이더(GPR)에 의한 도로포장의 전자기적 특성값 고찰)

  • Rhee, Jiyoung;Shim, Jaewon;Lee, Sangrae;Lee, Kang-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.285-294
    • /
    • 2020
  • This study investigated the use of Ground Penetrating Radar (GPR) over a two-decade period on public roads, focusing on the electromagnetic characteristics of the pavement dielectrics and attenuation. From the results, a typical range of characteristic value, influencing factors, and a correction method were suggested. The typical dielectrics of asphalt pavements were 4-7, as measured by an air-coupled 1 GHz GPR antenna. The dielectrics of concrete pavements were very large in the early age, but were drastically reduced with ageing. Ten years on, collection was in the range of 6-12. The dielectrics were proportional to the relative humidity (R.H.) of the atmosphere. The effects were reduced to one eighth with an overlay. Attenuation generally increased with thickness of the road layer, and also increased where there was damage. The GPR results could also vary depending on the weather conditions as well as on the characteristics of the GPR equipment, even at the same frequency. Therefore, GPR surveys should be performed on road surfaces without debris on a single, fine day. The reliability of the GPR analysis could be improved by cores and equipment calibration with other non-destructive test surveys.

Structural Analysis of Concrete-filled FRP Tube Dowel Bar for Jointed Concrete Pavements (콘크리트 포장에서 FRP 튜브 다웰바의 역학적 특성 분석)

  • Park, Jun-Young;Lee, Jae-Hoon;Sohn, Dueck-Su
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.21-30
    • /
    • 2011
  • As well known, dowel bars are used to transfer traffic load acting on one edge to another edge of concrete slab in concrete pavement system. The dowel bars widely used in South Korea are round shape steel bar and they shows satisfactory performance under bending stress which is developed by repetitive traffic loading and environment loading. However, they are not invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Especially, the erosion could rapidly progress with saline to prevent frost of snow in winter time. The problem under this circumstance is that the erosion not only drops strength of the steel dower bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem in reasonable expenses, dowers bars with various materials are being developed. Fiber reinforced plastic(FRP) dower that is presented in this paper is suggested as an alternative of the steel dowel bar and it shows competitive resistance against erosion and tensile stress. The FRP dowel bar is developed in tube shape and is filled with high strength no shrinkage. Several slab thickness designs with the FRP dowel bars are performed by evaluating bearing stress between the dowel bar and concrete slab. To calculated the bearing stresses, theoretical formulation and finite element method(FEM) are utilized with material properties measured from laboratory tests. The results show that both FRP tube dowel bars with diameters of 32mm and 40mm satisfy bearing stress requirement for dowel bars. Also, with consideration that lean concrete is typical material to support concrete slab in South Korea, which means low load transfer efficiency and, therefore, low bearing stress, the FRP tube dowel bar can be used as a replacement of round shape steel bar.