• Title/Summary/Keyword: concrete modulus of elasticity

Search Result 390, Processing Time 0.029 seconds

Mechanical Properties and Resistance to Freezing and Thawing of the Recycled Aggregate Concrete with Metakaolin (메타카올린을 혼합한 재생골재 콘크리트의 역학적 특성 및 동결융해 저항성)

  • Moon, Han-Young;Kim, Yang-Bae;Moon, Dae-Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.270-278
    • /
    • 2005
  • Recycled aggregate concrete has lower strength and durability compared to concrete with natural aggregate. Therefore, metakaolin is used to improve the properties of recycled aggregate concrete. Main components of metakaolin are $SiO_2$ and $Al_2O_3$. and specific surface area is 9 times larger than that of ordinary portland cement. Quality of demolished-recycled aggregate(DRA) satisfies the type 1 of KS F 2573, but quality of source-recycled aggregate(SRA) does not satisfy with the type 2 of KS F 2573. When metakaolin was replaced with 20% of cement, compressive strength of concrete with SRA and DRA develops about 40~64% of control concrete. Water absorption ratio was reduced about 2% by replacing 20% metakaolin and it represents low compared to the natural aggregate concrete without metakaolin. In addition, the resistance to freezing and thawing, of concrete with DRA is indicated to remarkably enhanced due to the contribution of metakaolin. However, when metakaolin is replaced with 20% of cement, relative dynamic modulus of elasticity of concrete with SRA was below 60% at 210 freezing and thawing cycles.

Development for Penetrative Performance Improving Agent to In Prevent Deterioration of Concrete Structures (콘크리트 구조물의 내구성능 저하를 방지하는 침투형 성능개선제 개발)

  • Ryu Gum-Sung;Koh Kyoung-Taek;Kim Sung-Wook;Kim Do-Gyeum
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.489-498
    • /
    • 2005
  • Recently, the deterioration of concrete structures have been increased by the damage from salt, carbonization, freezing & thawing and the others. Therefore, the measures for the deterioration of concretes have been taken. Among them, it has been often used that surface treatment which cut off the deterioration factors of durability by protecting the surface of concrete. The water proof and repair materials for concrete mainly use organic materials such as epoxy, these materials excel in intial bonding force and resistance to chemical agents. But they cause difference in the modulus of elasticity and the rate of shrinkage and expansion of concrete, and thus result in such problems as scaling and spatting in the progress of time. Therefore in this study it develop the performance Improving agent of concrete surface that can block a deterioration cause such as $CO_2$ gas, chloride ion and water from the outside and enhance waterproofing ability by reinforcing the concrete surface when applying it to concrete structures.

A Study on Settlement Characteristics of Earthwork Subgrade with Lowering the Groundwater in High-speed Railway (지하수위 저하에 따른 고속철도 토공노반 침하특성에 관한 연구)

  • Kim, Young-Ha;Eum, Ki-Young;Han, Sang-Jae;Park, Yong-Gul;Jung, Jae-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.67-74
    • /
    • 2015
  • Unlike the primary consolidation settlement, the settlement of ground water lowering is not considered separately because of relatively small residual settlement. But the allowed residual settlement (30 mm) of the concrete track in the high-speed railway may be exceeded due to unexpected excessive ground water lowering. This study analyzed the effect of the settlement according to the ground water level change using finite element analysis of stress-pore pressure coupling model, and compared the analysis results with the measured data. As a result, the range of elasticity modulus satisfying the allowable settlement was proposed, and it is suggested that settlement due to ground water level changes should be reflected in the design.

Effect of Structural Geometry of Jointed Concrete Pavement on Backcalculation using AREA Method (줄눈콘크리트 포장의 구조적 형상이 AREA법을 이용한 역해석에 미치는 영향)

  • Yoo, Tae-Seok;Sim, Jong-Sung
    • International Journal of Highway Engineering
    • /
    • v.9 no.1 s.31
    • /
    • pp.39-46
    • /
    • 2007
  • Different backcalculation results for the same material properties are caused by different structural geometry. In this paper, based on real simulation results for typical pavement systems using 3-dimensional FE models, modified AREA graphs are proposed to graphically backcalculate modulus of elasticity of slab and subgrade based on center deflection and AREA. In modified graph for single infinity slab models, deflection and AREA are increased in deeper depth to bedrock. But, effects of depth to bedrock more than 4.0 meters on backcalculation results are negligible. And, center deflection and AREA generated from multifinite slab models are larger than those of single infinity slab models with same depth to bedrock.

  • PDF

Behaviour of One-Way Concrete Slabs Reinforced with Fiber Reinforced Polymer (FRP) Bars (FRP 보강근을 주근으로 사용한 일방향 콘크리트 슬래브의 거동)

  • Seo, Dae-Won;Han, Byum-Seok;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.763-771
    • /
    • 2007
  • Over the last few decades, many researches have been conducted in order to find solution to the problem of corrosion in steel reinforced concrete. As a result, methods such as the use of stainless steel bars, epoxy coatings, and concrete additives, etc., have been tried. While effective in some situations, such remedies may still be unable to completely eliminate the problems of steel corrosion. Fiber reinforced polymer (FRP) elements are appealing as reinforcement due to some material properties such as high tensile strength, low density, and noncorrosive. However, due to the generally lower modulus of elasticity of FRP in comparison with the steel and the linear behavior of FRP, certain aspects of the structural behavior of RC members reinforced with FRP may be substantially different from similar elements reinforced with steel reinforcement. This paper presents the flexural behavior of one-way concrete slabs reinforced with FRP bars. They were simply supported and tested in the laboratory under static loading conditions to investigate their crack pattern and width, deflections, strains and mode of failure. The experimental results shows that behavior of the FRP reinforced slabs was bilinearly elastic until failure. Also, the results show that the FRP overreinforced concrete beams in this study can be safe for design in terms of deformability.

An Evaluation of Applicable Feature of Structural Member Using High Volume Fly-Ash Concrete (다량치환된 플라이애시 콘크리트의 구조부재 적용성 평가)

  • Kim, Gyung-Tae;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.109-114
    • /
    • 2015
  • Recently, numerous studies were dedicated on the HVFA concrete using high volume CCPs. In initial studies, main topics are dependent on material properties of HVFA concrete, but several studies were dedicated on the structural behavior of HVFA concrete such as elasticity modulus, stress-strain relationship and structural behavior nowadays. Therefore, in this paper, on the basis of recent studies on the structural behavior, 2 large-scale test members were manufactured with 7.5m span length and fly ash replacement ratio 50%, concrete compressive strength 50MPa in order to apply to the practical structure and evaluate possibility of application. From the test results, although there were small differences between test results and existing research results on the stress-strain relationship, the application to practical structure is not hard. In flexural test, as the produced pattern of displacement and strain were similar to those of general concrete without fly ash, the difference between 50% fly ash concrete and general concrete is very small. And the concrete shear strength obtained by test was similar to that of design code, so existing design code will be also able to apply.

Restraint Coefficient of Long-Term Deformation and loss Rate of Pre-Compression for Concrete (콘크리트 장기변형의 구속계수와 선압축력의 손실률)

  • 연정흠;주낙친
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.521-529
    • /
    • 2002
  • A restraint coefficient for creep and dry shrinkage deformation of concrete in a composite section was derived to calculate the residual stress, and an equation for the loss rate of the pre-compression force was proposed. The derived restraint coefficient was computed by using the transformed section properties for the age-adjusted effective modulus of elasticity. The long-term behavior of complicate composite sections could be analyzed easily with the restraint coefficient. The articles of the current design code was examined for PSC and steel composite sections. The dry shrinkage strains of $150 ~ 200$\times$10^{-6}$ for the computations of the statically indeterminate force and the expansion joint could be under-estimated for less restrained sections such as the reinforced concrete. The dry shrinkage strain of $180$\times$10^{-6}$ for the computation of residual stress in the steel composite section was unreasonably less value. The loss rate of 16.3% of the design code for the PSC composite section in this study was conservative for the long-term deformation of the ACI 205 but could not be used safely for that of the Eurocode 2. For pre-compressed concrete slab in the steel composite section, the loss rate of prestressed force with low strength reinforcement was much larger than that with high strength tendon. The loss rate of concrete pre-compression increased, while that of pre-tension decreased due to the restraint of the steel girder.

A Study on the Residual Mechanical Properties of Fiber Reinforced Concrete with High Temperature and Load (고온 및 하중에 따른 섬유보강 콘크리트의 잔존 역학적 특성에 관한 연구)

  • Kim, Young-Sun;Lee, Tae-Gyu;Nam, Jeong-Soo;Park, Gyu-Yeon;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.321-330
    • /
    • 2011
  • Recently, the effects of high temperature and fiber content on the residual mechnical properties of high-strength concrete were experimentally investigated. In this paper, residual mechanical properties of concrete with water to cement (w/c) ratios of 0.55, 0.42 and 0.35 exposed to high temperature are compared with those obtained in fiber reinforced concrete with similar characteristics ranging from 0.05% to 0.20% polypropylene (PP) fiber volume percentage. Also, factors including pre-load levels of 20% and 40% of the maximum load at room temperature are considered. Outbreak time, thermal strain, length change, and mass loss were tested to determine compressive strength, modulus of elasticity, and energy absorption capacity. From the results, in order to prevent the explosive spalling of 50 MPa grade concretes exposed to high temperature, more than 0.05 vol. % of PP fibers is needed. Also, the cross-sectional area of PP fiber can influence the residual mechanical properties and spalling tendency of fiber reinforced concrete exposed to high temperature. Especially, the external loading increases not only the residual mechanical properties of concrete but also the risk of spalling and brittle failure tendency.

Mechanical Characteristics of Recycled PET Polymer Concrete with Demolished Concrete Aggregates (PET와 재생골재를 이용한 폴리머콘크리트의 역학적 특성)

  • Jo Byung-Wan;Lee Du-Wha;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.335-342
    • /
    • 2005
  • In this paper, fundamental properties of Polymer Concrete(PC), made from unsaturated polyester resin based on recycled PET and recycled aggregate were investigated. Mechanical properties include strength, modulus of elasticity, and chemical resistance. Resins based on recycled PET and recycled aggregate offer the possibility of low source cost for forming useful products, and would also help alleviate an environmental problem and save energy. The results of test for resin contents and recycled aggregate ratio we, first, the strength of Polymer Concrete made with resin based on recycled PET and recycled aggregate increases with resin contents relatively, however beyond a certain resin contents the strength does not change appreciably, Second, the relationship between the compressive strength and recycled aggregate ratio at resin $9\%$ has a close correlation linearly whereas there is no correlation between the compressive strength and the flexural strength of RPC with recycled aggregate ratio. Third, the effect of acid resistance at resin $9\%$ was found to be nearly unaffected by HCI, whereas the PC with $100\%$ recycled aggregate showed poor acid resistance. Unlike acid, alkali nearly does not seem to attack the RPC as is evident from the weight change and compressive strength. And last, In case of stress-strain curve of polymer concrete with $100\%$ of natural aggregate and $100\%$ recycled aggregate it is observed the exceptional behavior resulting in different failure mechanisms of the material under compression.

An Experimental Study on the High Strength Lightweight Self-Compacting Concrete (고강도경량 자기충전콘크리트에 관한 실험적 연구)

  • Choi Yun-Wang;Kim Yong-Jic;Moon Han-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.923-930
    • /
    • 2005
  • This paper was to evaluate the high strength lightweight self-compacting concrete(HLSCC) manufactured by Nan-Su, which main factor, Packing Factor(PF) for mixing design, has been modified and improved. We have examined HLSCC performance at its fresh condition as well as its mechanical properties at the hardened condition. The evaluation of HLSCC fluidity has been conducted per the standard of second class rating of JSCE, by three categories of flowability(slump-flow), segregation resistance ability(time required to reach 500mm of slump-flow and time required to flow through V-funnel) and filling ability(U-box test) of fresh concrete. The compressive strength of HLSSC at 28 days has come out to more than 30MPa in all mixes. The relationship between the compressive strength-splitting tensile strength and compressive strength-modulus of elasticity of HLSSC were similar those of typical lightweight concrete. Compressive strength and dry density of HLSCC at 28 days from the multiple regression analysis resulted as $f_c=-0.16LC-0.008LS+50.05(R=0.83)\;and\;f_d=-3.598LC-2.244LS+2,310(R=0.99)$, respectively.