• Title/Summary/Keyword: concrete module

Search Result 149, Processing Time 0.027 seconds

Behavior Evaluation on the Non-symmetric Composite Column for Unit Modular Frames (모듈러 골조용 비대칭 기둥-보 접합부에 대한 거동 평가)

  • Park, Keum-Sung;Lee, Sang-Sup;Bae, Kyug-Woong;Moon, Ji-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.36-44
    • /
    • 2019
  • The purpose of this study is to evaluate the structural performance of press-formed type asymmetric column to beam connections of steel-PC composite module frames. Most of the column sections of the joints making up the modular frame use a closed square steel section. The column-beam connection using the closed column section has difficulty in reducing the workability and securing the fire resistance. In order to overcome this disadvantage, concrete is filled in the asymmetrical open type cross section of the steel plate by press forming. A total of four specimens were fabricated to investigate the structural performance of press formed type asymmetric column to beam connections. The experimental results show that the structural performance and behavior of the asymmetric columns are different depending on whether the asymmetric column cross section is composited or the column width thickness ratio. The structural performance of the press formed type asymmetric column to beam connection was evaluated by comparing the experimental results with the theoretical formulas.

Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM

  • Yaylaci, Murat;Adiyaman, Gokhan;Oner, Erdal;Birinci, Ahmet
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.199-210
    • /
    • 2021
  • The aim of this paper was to examine the continuous and discontinuous contact problems between the functionally graded (FG) layer pressed with a uniformly distributed load and homogeneous half plane using an analytical method and FEM. The FG layer is made of non-homogeneous material with an isotropic stress-strain law with exponentially varying properties. It is assumed that the contact at the FG layer-half plane interface is frictionless, and only the normal tractions can be transmitted along the contacted regions. The body force of the FG layer is considered in the study. The FG layer was positioned on the homogeneous half plane without any bonds. Thus, if the external load was smaller than a certain critical value, the contact between the FG layer and half plane would be continuous. However, when the external load exceeded the critical value, there was a separation between the FG layer and half plane on the finite region, as discontinuous contact. Therefore, there have been some steps taken in this study. Firstly, an analytical solution for continuous and discontinuous contact cases of the problem has been realized using the theory of elasticity and Fourier integral transform techniques. Then, the problem modeled and two-dimensional analysis was carried out by using ANSYS package program based on FEM. Numerical results for initial separation distance and contact stress distributions between the FG layer and homogeneous half plane for continuous contact case; the start and end points of separation and contact stress distributions between the FG layer and homogeneous half plane for discontinuous contact case were provided for various dimensionless quantities including material inhomogeneity, distributed load width, the shear module ratio and load factor for both methods. The results obtained using FEM were compared with the results found using analytical formulation. It was found that the results obtained from analytical formulation were in perfect agreement with the FEM study.

Heating Transferring Charcteristics of Cement Mortar Block with Waste CNT and Conduction Activator (폐CNT와 전도촉진재를 혼입한 시멘트 모르타르 블록의 발열 전도 특성)

  • Koo, Hounchul;Kim, Woon-Hak;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.176-183
    • /
    • 2022
  • High-purity waste CNTs were mixed into cement mortar to manufacture heat-generating concrete that can use low voltage power, and carbon fiber and waste cathode materials were also used improve the conductivity of the mortar. The waste CNTs were analyzed to have a high concentration of multi-walled CNTs, and substituted liquid type waste CNTs were used during mortar mixing in order to increase dispersibility. The temperature change of the mortar with CNT was evaluated when using electric power below DC 24 V in order to utilize a small self-generation facility such as small solar power module when the mortar heats up and to minimize electromagnetic waves. When liquid-type waste CNTs were applied and a voltage of DC 24 V was introduced, it rose to 60 ℃ in a 200 × 100 × 50 mm mortar block specimen. The field applicability of self heating mortar with waste CNT was sufficient and also the amount of change in heat energy in mortar with liquid type waste CNT, carbon fiber and waste cathode materials is more effective compared to it of other variables.

The Tentative Plans of Middle-rise Traditional Houses (Han-ok) Located on Seoun-dong in Urban Area of Cheongju, Korea (중층형 생활한옥 모델시안 연구 - 청주 서운동의 사례를 중심으로 -)

  • Kim, Chan Gu;Kim, Tai Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.2
    • /
    • pp.21-28
    • /
    • 2022
  • Focusing on the creation of a new han ok, especially a mid-rise hybrid-structured Han-ok, this study proposes a middle-rise (four-story) Han-ok on one and two lots located in Seoun-dong, the existing Han-ok intensive housing site in downtown Cheongju. 1) In terms of layout and function, according to the existing L-shaped Han-ok corresponding to the road and the direction, the parking lots and shops on the 1st floor, the business facility on the 2nd floor, the Han-ok on the 3rd and 4th floors are placed. There are yards, open roof yards, and semi-open Daecheong(大廳, main hall), which can be shared by residents. 2) In terms of structure and form, one or two floors (some 3 floors) are 5.4m square and 5.4×6.6m modules of the RC(Reinforced Concrete) group, and the upper floor reflects the 2.7m module, size and shape of the existing Han-ok. By extending the outer wall of the RC group in the lower floors (1st to 3rd floors) to the wooden exterior of the upper floors (2nd to 4th floors), it is attempted to avoid the awkward appearance of the RC group being exposed to wooden structures. And it is also attempted to reflect the wooden shape and design elements through the elevation elements such as horizontal windows, corner windows, picture frames, and vertical slits. 3) In environmental control and facilities, it is attempted to smooth the ventilation of the building by forming a vertical upward airflow from the dark space of the low floor to the positive of the upper floor. This doubles the effect through a vertical rise of cold air generated in a narrow alleyway, piloti parking lot, and the various voids. In addition to the Daecheong and Numaru(loft) of Han ok, the rooftop yard, the terrace, and the balcony, horizontal natural ventilation is generated through divided doors and transom windows.

A Study on Development of Energy Education Materials for Middle School Students (중학교용 에너지 교육 자료 개발 연구)

  • 최돈형;이양락
    • Hwankyungkyoyuk
    • /
    • v.7 no.1
    • /
    • pp.46-87
    • /
    • 1994
  • Our country has been consuming a huge amount of energy in the course of industrialization and its demand is expected to increase enormously in the future. However, the deposits of energy resources are so limited that the settlement of energy problem comes up the essential subject. To solve the energy problem, it is requested that new resources to gain energy stably should be developed and also energy should be economized and used effectively. The effective use of energy and an the wisdom of economy in energy are requested to everybody and these things should be habitualized from very young age through education. Nevertheless, almost every school in our country hasn’t been concerned about energy education. Even though they have a concern, they are very short of the energy education materials and the quality of the materials is not so good. Therefore it is very meaningful to the settlement of energy problem of the country to make the students who will lead our country to make the students who will lead our country in the future realize the seriousness of energy problem and to provide them the necessary knowledge and methods to solve this problem so that they practice those things in everyday life. Having these necessities, this research, supported by The Korea Energy Management Corporation(KEMCO), was performed for 8 months from April 17, 1994 to December 17, 1994. Many peoples participated in this study such as 30 staffs of researchers and authors, 5 staffs of photographers and illustrators, and 3 VCR program producers developing an energy education material set for middle school students that includes a printed material for student, a diskette for computer simulation, a teacher's guidebook, VCR material and its guidebook. The following main development direction was established : First, the material for student should be consisted of units that let students know the seriousness of energy problem. Second, the focus should be put on the necessary method and practice to economize energy actually in real life based on the basic knowledge learned in elementary school. Third, material for student should be consisted of modules to be student activity-oriented teaching-learning rather than lecture-oriented one. The activity, to maximize student's interests, should be presented in various forms such as experiments, investigation, play, data interpretation, computer simulation, visits, expression and appreciation, etc. To develop the energy education materials for middle school students, a research plan was made first. After literature review about domestic and foreign energy education materials, several research trips home and abroad, and discussion meetings, the basic theory of energy education such as the principle, objective, contents, teaching-learning method, and evaluation method was established. Material for student was developed through the following procedures : The activities in the existing energy education materials were analysed and were divided into four categories related to energy using places of home, school, community, and country, and which were again divided into three categories related to time of past, present, and future, Considering these division, nine modules which are structure units of material for student were chosen, Each module comprises 2-4 activities. Totally 31 activities were designed in this way. The syllabi were made out for each activity and writing was asked for to experts related to each activity after several discussions and revision. To complement the draft, another several discussions and revision were also made on it and then pictures and illustrations were asked for. All these procedures complete the material for student, titled ; Energy Inquiry of Middle School Students', which totals 129 pages and is all in color. As the manuscript of material for student was fixed, writing for teacher's guidebook was asked for to the same writers. The draft of teacher's guidebook was also complemented through the several concentrated works and discussions. Teacher's guidebook focused on the teaching-learning principle and methods of energy education and on the concrete instruction cases for effective instruction of material for student. It is organized with two parts : the one is 'general outline' which introduces theoretical contents and the other is 'details' which are practically helpful to teaching-learning. It is totally 131 pages including both 'general outline' and 'details'. The VCR material and its guidebook consist of contents that cultivate the good attitude trying to economize energy and raise student's interests with a purpose of strong motivation to recognize the necessity of economy and practice it. After establishing development direction of VCR material through discussion meetings and research trips, its script was made by relevant experts. Then the script was also reviewed two times. The drafted VCR material made by a video material developing expert was examined and modified by previews twice. After completion of VCR material, the VCR guidebook was made. All these procedures led to the development of VCR material which runs 20 minutes in VHS type. The VCR guidebook shows a production purpose of the program, structure of contents, evaluation methods, and contents of the program in detail to give help to instructors when they use this VCR material, When these energy education materials are used, it is desirable that the VCR material should be presented first to induce student's motive, and then material for student is introduced Since the material for student is composed of activity-oriented modules and each module is independent one another in general, and each activity is, too. the necessary module or activity can be chosen and utilized in any order according to school or class conditions. This energy education materials will contribute to the development of student's ability to solve energy problem in everyday life and teacher's ability to teach the fundamental knowledge and method in solving energy problem.

  • PDF

Study on Structure Visual Inspection Technology using Drones and Image Analysis Techniques (드론과 이미지 분석기법을 활용한 구조물 외관점검 기술 연구)

  • Kim, Jong-Woo;Jung, Young-Woo;Rhim, Hong-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.6
    • /
    • pp.545-557
    • /
    • 2017
  • The study is about the efficient alternative to concrete surface in the field of visual inspection technology for deteriorated infrastructure. By combining industrial drones and deep learning based image analysis techniques with traditional visual inspection and research, we tried to reduce manpowers, time requirements and costs, and to overcome the height and dome structures. On board device mounted on drones is consisting of a high resolution camera for detecting cracks of more than 0.3 mm, a lidar sensor and a embeded image processor module. It was mounted on an industrial drones, took sample images of damage from the site specimen through automatic flight navigation. In addition, the damege parts of the site specimen was used to measure not only the width and length of cracks but white rust also, and tried up compare them with the final image analysis detected results. Using the image analysis techniques, the damages of 54ea sample images were analyzed by the segmentation - feature extraction - decision making process, and extracted the analysis parameters using supervised mode of the deep learning platform. The image analysis of newly added non-supervised 60ea image samples was performed based on the extracted parameters. The result presented in 90.5 % of the damage detection rate.

SHIELDING ANALYSIS OF DUAL PURPOSE CASKS FOR SPENT NUCLEAR FUEL UNDER NORMAL STORAGE CONDITIONS

  • Ko, Jae-Hun;Park, Jea-Ho;Jung, In-Soo;Lee, Gang-Uk;Baeg, Chang-Yeal;Kim, Tae-Man
    • Nuclear Engineering and Technology
    • /
    • v.46 no.4
    • /
    • pp.547-556
    • /
    • 2014
  • Korea expects a shortage in storage capacity for spent fuels at reactor sites. Therefore, a need for more metal and/or concrete casks for storage systems is anticipated for either the reactor site or away from the reactor for interim storage. For the purpose of interim storage and transportation, a dual purpose metal cask that can load 21 spent fuel assemblies is being developed by Korea Radioactive Waste Management Corporation (KRMC) in Korea. At first the gamma and neutron flux for the design basis fuel were determined assuming in-core environment (the temperature, pressure, etc. of the moderator, boron, cladding, $UO_2$ pellets) in which the design basis fuel is loaded, as input data. The evaluation simulated burnup up to 45,000 MWD/MTU and decay during ten years of cooling using the SAS2H/OGIGEN-S module of the SCALE5.1 system. The results from the source term evaluation were used as input data for the final shielding evaluation utilizing the MCNP Code, which yielded the effective dose rate. The design of the cask is based on the safety requirements for normal storage conditions under 10 CFR Part 72. A radiation shielding analysis of the metal storage cask optimized for loading 21 design basis fuels was performed for two cases; one for a single cask and the other for a $2{\times}10$ cask array. For the single cask, dose rates at the external surface of the metal cask, 1m and 2m away from the cask surface, were evaluated. For the $2{\times}10$ cask array, dose rates at the center point of the array and at the center of the casks' height were evaluated. The results of the shielding analysis for the single cask show that dose rates were considerably higher at the lower side (from the bottom of the cask to the bottom of the neutron shielding) of the cask, at over 2mSv/hr at the external surface of the cask. However, this is not considered to be a significant issue since additional shielding will be installed at the storage facility. The shielding analysis results for the $2{\times}10$ cask array showed exponential decrease with distance off the sources. The controlled area boundary was calculated to be approximately 280m from the array, with a dose rate of 25mrem/yr. Actual dose rates within the controlled area boundary will be lower than 25mrem/yr, due to the decay of radioactivity of spent fuel in storage.

A Study on Evaluation of Floor Vibration for Steel Frame Modular Housing (철골 조립식주택 바닥판 진동 평가에 관한 연구)

  • Kim, Jong-Sung;Jo, Min-Joo;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.104-111
    • /
    • 2016
  • The steel frame modular housing of which the research and development has been actively carried out recently cannot be constructed through monolithic placement like the reinforced concrete deck of general structure due to the characteristics of construction method of production in the factory and assembly on the site. And floor vertical vibration and deflection caused by inhabitants' activities may become an important issue in the aspect of usability evaluation due to a decrease in the section size of member, a decrease in weight, and so on. Therefore, this study evaluated the vibration performance of deck by using formula of AISC Design Guide 11(hereinafter AISC formula) which was practically used in general for modules where a stud was and wasn't installed at the center of beam in the longitudinal direction in the modular housing to be studied, and examined the applicability of AISC formula through comparison with the results of analysis using a general-purpose analysis program. On the basis of this, a structural cause for an error to occur between analysis result and AISC formula in the deck of module in which a stud was installed was analysed, and measures for considering this were suggested. Besides, an analysis model with the variables of measures for improving the floor vibration performance of modular housing to be studied was established. And measures having excellent vibration performance and economic feasibility were suggested through vibration response analysis and economic evaluation.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF