• Title/Summary/Keyword: concrete modelling

Search Result 349, Processing Time 0.02 seconds

Moisture distribution in concrete subjected to rain induced wetting-drying

  • Sarkar, Kaustav;Bhattacharjee, Bishwajit
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.635-656
    • /
    • 2014
  • A rational estimation of moisture distribution in structural concrete is vital for predicting the possible extent and rate of progression of impending degradation processes. The paper proposes a numerical scheme for analysing the evolution of moisture distribution in concrete subjected to wetting-drying exposure caused by intermittent periods of rainfall. The proposed paradigm is based on the stage wise implementation of non-linear finite element (FE) analysis, with each stage representing a distinct phase of a typical wet-dry cycle. The associated boundary conditions have been constituted to realize the influence of various meteorological elements such as rain, wind, relative humidity and temperature on the exposed concrete surface. The reliability of the developed scheme has been demonstrated through its application for the simulation of experimentally recorded moisture profiles reported in published literature. A sensitivity analysis has also been carried out to study the influence of critical material properties on simulated results. The proposed scheme is vital to the service life modelling of concrete structures in tropical climates which largely remain exposed to the action of alternating rains.

Stirrup Stress in Reinforced Concrete Beams (철근콘크리트 보의 스터럽응력)

  • 김주영;박경호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.585-590
    • /
    • 1999
  • There is still a lack of knowledge and modelling relating to shear behaviour in reinforced concrete beams. The reason is that shear loading leads to complicated physical mecanisms, such as interlock action, dowel action, etc. Therefore, It is difficult that we make the ideal model of shear behaviour, while Truss model theory has been made good use of shear design because of simplicity and reasonableness. In this study, 6 T-type reinforced concrete beams were designed and made based on the two truss models, i.e, the plasticity truss model and the compatibility truss model, to observe shear strength of concrete and stress distribution of stirrups. 6 beams test pieces were tested with the following testing parameters. 1) specified concrete strength ; 270kg/$\textrm{cm}^2$, 400kg/$\textrm{cm}^2$ 2) with and without the steel fiber.

  • PDF

Analytical Deterioration Modelling for Recarbontion of Repaired Concrete (보수된 콘크리트의 재탄산화 열화에 대한 분석적 모델)

  • Do, Jeong-Yun;Kim, Doo-Kie;Song, Hun;Jo, Young-Kug
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.217-218
    • /
    • 2010
  • This study presented the analytical evaluation model effective in the concrete structure repaired with a patching material. The model considered the effect of the repair material on carbon dioxide penetration into the repaired concrete as evaluating the remaining service life of the CO2-deteriorated concrete structure after repair. The diffusion profiles of carbon dioxide as well as the carbonated concrete were effectively able to be modelled with analytical method based on Fick's 1st diffusion law.

  • PDF

Modelling time-dependent cracking in reinforced concrete using bond-slip Interface elements

  • Chong, Kak Tien;Gilbert, R. Ian;Foster, Stephen J.
    • Computers and Concrete
    • /
    • v.1 no.2
    • /
    • pp.151-168
    • /
    • 2004
  • A two-dimensional nonlinear finite element model is developed to simulate time-dependent cracking of reinforced concrete members under service loads. To predict localized cracking, the crack band model is employed to model individual crack opening. In conjunction with the crack band model, a bond-interface element is used to model the slip between concrete and reinforcing steel permitting large slip displacements between the concrete element nodes and the steel truss element nodes at crack openings. The time-dependent effects of concrete creep and shrinkage are incorporated into the smeared crack model as inelastic pre-strains in an iterative solution procedure. Two test examples are shown to verify the finite element model with good agreement between the model and the observed test results.

Mathematical Models for Predicting Service Lives of Concrete Structures on Chloride Induced Corrosion of Steel Reinfrocement (염소이온에 의한 철근부식에 관한 콘크리트 구조물의 내구년한 예측을 위한 수학적 모델)

  • 오병환;정원기;강승희;장승엽
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.201-206
    • /
    • 1996
  • Recently, to utilize conutry effectively, many concrete structures such as Young Jong Do New Airport. SeoHae Bridege are being constructed. Therefore, Corrosion of steel reinforcement of concrete structures become more and more serious, and prediction of service lives of concrete structures considering steel corrosion is needed much more. The methodologies of predicting service life have been studied for various views, but mathematical modelling based on diffusion theory is generally applied. The purpose of this paper is to investigate current mathematical models, and suggest theoretical basis on estimation of service lives of concrete structures in marine environment. Thus, the procedures for selecting variables such as threshold chloride concentration, diffusion coefficient, etc are suggested, and the service lives calculated through these procedures for various diffusion coefficients and cover depths are presented.

  • PDF

Modelling creep of high strength concrete

  • Dias-da-Costa, D.;Julio, E.N.B.S.
    • Computers and Concrete
    • /
    • v.7 no.6
    • /
    • pp.533-547
    • /
    • 2010
  • Recent developments in concrete mixing made possible the production of concretes with high compressive strength showing, simultaneously, high workability. These concretes also present high strengths at young ages, allowing the application of loads sooner. It is of fundamental importance to verify if creep models developed for current concrete still apply to these new concretes. First, a FEM-based software was adopted to test available creep models, most used for normal strength concrete, considering examples with known analytical results. Several limitations were registered, resulting in an incorrect simulation of three-dimensional creep. Afterwards, it was implemented a Kelvin-chain algorithm allowing the use of a chosen number of elements, which adequately simulated the adopted examples. From the comparison between numerical and experimental results, it was concluded that the adopted algorithm can be used to model creep of high strength concrete, if the material properties are previously experimentally assessed.

Seismic response of masonry infilled RC frames: practice-oriented models and open issues

  • Lima, Carmine;De Stefano, Gaetano;Martinelli, Enzo
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.409-436
    • /
    • 2014
  • Although it is widely accepted that the interaction -between masonry infill and structural members significantly affects the seismic response of reinforced concrete (RC) frames, this interaction is generally neglected in current design-oriented seismic analyses of structures. Moreover, the role of masonry infill is expected to be even more relevant in the case of existing frames designed only for gravitational loads, as infill walls can significantly modify both lateral strength and stiffness. However, the additional contribution to both strength and stiffness is often coupled to a modification of the global collapse mechanisms possibly resulting in brittle failure modes, generally related to irregular distributions of masonry walls throughout the frame. As a matter of principle, accurate modelling of masonry infill should be at least carried out by adopting nonlinear 2D elements. However, several practice-oriented proposals are currently available for modelling masonry infill through equivalent (nonlinear) strut elements. The present paper firstly outlines some of the well-established models currently available in the scientific literature for modelling infill panels in seismic analyses of RC frames. Then, a parametric analysis is carried out in order to demonstrate the consequences of considering such models in nonlinear static and dynamic analyses of existing RC structures. Two bay-frames with two-, three- and four-storeys are considered for performing nonlinear analyses aimed at investigating some critical aspects of modelling masonry infill and their effects on the structural response. Particularly, sensitivity analyses about specific parameters involved in the definition of the equivalent strut models, such as the constitutive force-displacement law of the panel, are proposed.

Nonlinear static and dynamic analyses of reinforced concrete buildings - comparison of different modelling approaches

  • Carvalho, Goncalo;Bento, Rita;Bhatt, Carlos
    • Earthquakes and Structures
    • /
    • v.4 no.5
    • /
    • pp.451-470
    • /
    • 2013
  • It generally accepted that most building structures shall exhibit a nonlinear response when subjected to medium-high intensity earthquakes. It is currently known, however, that this phenomenon is not properly modelled in the majority of cases, especially at the design stage, where only simple linear methods have effectively been used. Recently, as a result of the exponential progress of computational tools, nonlinear modelling and analysis have gradually been brought to a more promising level. A wide range of modelling alternatives developed over the years is hence at the designer's disposal for the seismic design and assessment of engineering structures. The objective of the study presented herein is to test some of these models in an existing structure, and observe their performance in nonlinear static and dynamic analyses. This evaluation is done by the use of two of a known range of advanced computer programs: SAP2000 and SeismoStruct. The different models will focus on the element flexural mechanism with both lumped and distributed plasticity element models. In order to appraise the reliability and feasibility of each alternative, the programs capabilities and the amount of labour and time required for modelling and performing the analyses are also discussed. The results obtained show the difficulties that may be met, not only in performing nonlinear analyses, but also on their dependency on both the chosen nonlinear structural models and the adopted computer programs. It is then suggested that these procedures should only be used by experienced designers, provided that they are aware of these difficulties and with a critical stance towards the result of the analyses.

Modelling of flange-stud-slab interactions and numerical study on bottom-flange-bolted composite-beam connections

  • Xiaoxiang Wang;Yujie Yu;Lizhong Jiang;Zhiwu Yu
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.203-216
    • /
    • 2023
  • The composite beam connections often encountered fracture failure in the welded bottom flange joint, and a bottom flange bolted connection has been proposed to increase the deformation ability of the bottom flange joint. The seismic performance of the bottom flange bolted composite beam connection was suffered from both the composite action of concrete slab and the asymmetric load transfer mechanisms between top and bottom beam flange joints. Thus, this paper presents a comprehensive numerical study on the working mechanism of the bottom flange bolted composite beam connections. Three available modelling methods and a new modelling method on the flange-stud-slab interactions were compared. The efficient numerical modeling method was selected and then applied to the parametric study. The influence of the composite slab, the bottom flange bolts, the shear composite ratio and the web hole shape on the seismic performance of the bottom flange bolted composite beam connections were investigated. A hogging strength calculation method was then proposed based on numerical results.

Numerical crack modelling of tied concrete columns under compression

  • Bosco, C.;Invernizzi, S.
    • Computers and Concrete
    • /
    • v.10 no.6
    • /
    • pp.575-586
    • /
    • 2012
  • In the present paper the problem of monotonically compressed concrete columns is studied numerically, accounting for transverse steel reinforcement and concrete cracking. The positive confinement effect of the ties on the core concrete is modeled explicitly and studied in the case of distributed or concentrated vertical load. The main aim is to investigate the influence of transverse reinforcement steel characteristics on the column load carrying capacity and ductility, in order to provide an evaluation about some standards requirements about the class and ductility of steel to be used for ties. The obtained results show that the influence of transverse reinforcement steel class of ductility is negligible both on the column load carrying capacity and on its ductility. Also the dissipated energy is basically unchanged. In view of these evidences, some standards requirements about the steel class of ductility to be used for ties appear to be rather questionable.