• Title/Summary/Keyword: concrete mix

Search Result 1,199, Processing Time 0.028 seconds

Using ANN to predict post-heating mechanical properties of cementitious composites reinforced with multi-scale additives

  • Almashaqbeh, Hashem K.;Irshidat, Mohammad R.;Najjar, Yacoub
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.337-350
    • /
    • 2022
  • This paper focuses on predicting the post-heating mechanical properties of cementitious composites reinforced with multi-scale additives using the Artificial Neural Network (ANN) approach. A total of four different feed-forward ANN models are developed using 261 data sets collected from 18 published sources. The models are optimized using 12 input parameters selected based on a comprehensive literature review to predict the residual compressive strength, the residual flexural strengths, elastic modulus, and fracture energy of heat-damaged cementitious specimens. Furthermore, the ANN is employed to predict the impact of several variables including; the content of polypropylene (PP) microfibers and carbon nanotubes (CNTs) used in the concrete, mortar, or paste mix design, length of PP fibers, the average diameter of CNTs, and the average length of CNTs. The influence of the studied parameters is investigated at different heating levels ranged from 25℃ to 800℃. The results demonstrate that the developed ANN models have a strong potential for predicting the mechanical properties of the heated cementitious composites based on the mixing ingredients in addition to the heating conditions.

Strength and stiffness characteristics of cement paste-slime mixtures for embedded piles

  • Yong-Hoon Byun;Mi Jeong Seo;WooJin Han;Sang Yeob Kim;Jong-Sub Lee
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.359-370
    • /
    • 2023
  • Slime is produced by excavation during the installation of embedded piles, and it tends to mix with the cement paste injected into the pile shafts. The objective of this study is to investigate the strength and stiffness characteristics of cement pasteslime mixtures. Mixtures with different slime ratios are prepared and cured for 28 days. Uniaxial compression tests and elastic wave measurements are conducted to obtain the static and dynamic properties, respectively. The uniaxial compressive strengths and static elastic moduli of the mixtures are evaluated according to the curing period, slime ratio, and water-cement ratio. In addition, dynamic properties, e.g., the constrained, shear, and elastic moduli, are estimated from the compressional and shear wave velocities. The experimental results show that the static and dynamic properties increase under an increase in the curing period but decrease under an increase in the slime and water-cement ratios. The cement paste-slime mixtures show several exponential relationships between their static and dynamic properties, depending on the slime ratio. The bearing mechanisms of embedded piles can be better understood by examining the strength and stiffness characteristics of cement paste-slime mixtures.

Experimental Study for Improving Method of Load Bearing and Spalling Prevention of 100 MPa High Strength Concrete Column (100 MPa급 고강도 콘크리트 기둥의 폭렬방지 및 하중지지력 향상방안에 관한 실험적 연구)

  • Cho, Bum-Yean;Kim, Heung-Youl;Kim, Hyung-Jun;Kwon, In-Kyu;Kim, Kyeong-Ok
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.78-84
    • /
    • 2012
  • In this study, we have conducted a fire resistance experiment under loading condition on standard fire to evaluate the fire resistance performance according to applying reinforcement of methods for reinforcing the lateral confinement of reinforced bars (Wire Rope) and fire resistance reinforcement (Fiber-Cocktail) for 100 MPa high strength concrete column. In the result of the experiment, in case of the test objects applied by hoop, it has been shown as not possible to be applied as the fire resistance structure after satisfying the fire resistance performance for 43 minutes. In case of applying the wire rope as lateral confinement of reinforced bar, instead of hoop in identical volume ratio, it has been shown as possible to apply it to the buildings with under 4 floors after satisfying the fire resistance performance fro 69 minutes with any separate fire resistance process. Also, in case of applying with mixing wire rope method, instead of hoop, and Fiber-Cocktail mix method to prevent spall, it has been shown as possible to apply to the buildings with over 12 floors after satisfying the fire resistance performance for 180 minutes.

Properties of Compressive Strength of Mortar Based on High-activated Blast Furnace Slag using the Slag by-product as an Activator (슬래그부산물을 자극제로 활용한 고활성 고로슬래그 미분말 모르타르의 압축강도 발현 특성)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Koo, Kyung-Mo;Shin, Kyoung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 2014
  • Recently, many efforts related to the utilization of industrial by-products have been made to reduce carbon dioxide emissions in the construction industry. Of these various efforts, concrete incorporating ground granulated blast furnace slag (BFS) provides many advantages compared to conventional concrete, such as high long-term compressive strength, improved durability and economic benefits because of its latent hydraulic property, and low compressive strength at early curing age. This paper investigates the compressive strength of high-activated ground granulated blast furnace slag blended mortar with slag by-product S type(SBP-S). The results of the experiment revealed that incorporating high-activated ground granulated blast furnace slag would affect the compressive strength of mortar. It was found that increasing the Blaine fineness and replacement ratio of slag by-product S type shows high compressive strength of mortar at early curing age because of its high $SiO_2$ and CaO contents in the slag. It is confirmed that an increase of curing age does not affect the compressive strength of mortar made with slag by-product S type at a high curing temperature. Moreover, it is possible to develop and design concrete manufactured with high-activated ground granulated blast furnace slag as binder considering the acceleration curing conditions and mix proportions.

An Experimental Study on the Bonding Shear Performance Evaluation of the UHPC According to an Bonding Interface Treatment of the Construction Joint (시공이음부 계면처리방법에 따른 초고성능 콘크리트의 전단부착성능 평가에 관한 실험적 연구)

  • Jang, Hyun-O;Kim, Bo-Seok;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.237-245
    • /
    • 2016
  • Structural performance and durability of ultra high performance concrete could demonstrate optimal performance when unity was kept. Accordingly, it is necessary to involve the characteristics and quantitative surface treatment at the same time in order to retain oneness of Ultra-High-Performance Concrete(UHPC) according to construction joint occurrence. Therefore, this study derives a reasonable surface treatment method in a material's point of view through the shear adhesion performance evaluation according to the construction joints surface processing method as a part for securing the adhesion performance of the construction joints when casting UHPC. 180 MPa of required average strength was used for mix of UHPC and surface treatment method was set to totally 7 level that MN, GR-10-0, GR-20-0, GR-30-0, SH-30-5, SH-30-10. After the specimen were manufactured to a size of $150{\times}150{\times}150mm$, Direct shear test was performed to evaluate the shear adhesion strength. As a result, it was confirmed that the adhesion performance was improved when executing a surface treatment for the construction joint interface and standard of failure mode of specimen was over Type C. Also, It was considered that interface of cross section and depth of concavo-convex should be concerned.

Setting Time and Strength Characteristics of Cement Mixtures with Set Accelerating Agent for Shotcrete (숏크리트용 급결제를 첨가한 시멘트 모르타르의 응결 및 강도특성)

  • Kim Jin-Cheol;Ryu Jong-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.70-78
    • /
    • 2004
  • Although set accelerating agents are used generally in New Austrian Tunneling Method, the standards for test methods and quality of set accelerating agents are not prescribed domestically. In this study, the proprieties of the various standards and the characteristics of set accelerating agents for shotcrete were evaluated. The alkali contents of set accelerating agents based on silicate, aluminate and cement were higher than those of alkali-free ones. From the result, it is thought that the quality control of aggregate should be enhanced and that the number of test cycle of alkali-aggregate reaction should be increased. The setting times of cement paste with set accelerating agents based on silicate and alkali-free ones were different largely with mixing methods. Compressive strength of mortar with set accelerating agents based on silicate, aluminate and cement at one day satisfied the specifications of Korea Concrete Institute. However, the strength ratio compared to control mix at 28 days showed as $50{\~}65\%$ except for the alkali-free set accelerating agents. As a results of setting time and strength test, the establishment of domestic standards that can reflect the characteristics of materials and construction methods of tunnels and that can increase quality of set accelerating agents is required immediately.

Neutron Shielding Performance of Mortar Containing Synthetic High Polymers and Boron Carbide (합성 고분자 화합물 및 탄화붕소 혼입에 따른 모르타르의 중성자 차폐성능 분석)

  • Min, Ji-Young;Lee, Bin-Na;Lee, Jong-Suk;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.197-204
    • /
    • 2016
  • Concrete walls of neutron generating facilities such as fusion reactors and fission reactors become radioactive by neutron irradiation. Both low-activation and neutron shielding are a critical concern at the dismantling stage after the shutdown of facilities with a requirement of radioactive waste management. To tackle this, two types of additives were investigated in fabricating mortar specimens: synthetic high polymers and boron carbide. It is well known that a hydrogen atom is effective in neutron shielding by an elastic scattering because its mass is almost the same as that of the neutron. And boron is an effective neutron absorber with a big neutron absorption cross section. In this study, the effect of the type, shape, and size of polymers were investigated as well as that of boron carbide. Total 16 mix designs were prepared to reveal the effect of polymers on mechanical properties and neutron shielding performance. The neutron does equivalent of polymers-based mortar for fast neutrons decreased by 36 %, and the count rate of boron carbide-based mortar with regard to thermal neutrons decreased by 90 % compared to conventional mortar. These results showed that a combination of polymers and boron carbide compounds has potential to reduce the thickness of neutron shields as well as radioactive waste from reactors.

Hysteretic Behavior Evaluation of a RC Coupling Beam using a Steel Fiber and Diagonal Reinforcement (강섬유와 묶음철근 보강을 통한 고성능 연결보의 이력거동 평가)

  • Oh, Hae Cheol;Lee, Kihak;Han, Sang Whan;Shin, Myoungsu;Jo, Yeong Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.291-298
    • /
    • 2015
  • In this paper, a bundled diagonal reinforcement using high performance steel fiber was proposed to enhance the construct ability and seismic performance. Experiments of coupling beam was composed of four specimens and the hysteretic behavior evaluated for reverse cyclic loading to specimens using high performance steel fiber. The main variables of the experiment is a amount of stirrup and bundled reinforcement, depending on whether the mix of steel fiber. Specimen which criteria was applied 100% of stirrup and bundled diagonal reinforcement of ACI318 criteria. With this, by appling same diagonal reinforcement, two specimens were created by adjusting stirrup of 75%, 50%. So, a total of four specimens were produced. When coupling beam was placed concrete, this experiment was mixed in a content of steel fiber 1%. All the specimens were produced by aspect ratio 3.5(l/h=1050/300) to a half-scale. In this result, two specimens as reduced to stirrup of 75%, 50% was no significant difference in the strength, stiffness and energy dissipation capacity, respectively compared to the stirrup of 100%.

Evaluation of Crack-Repairing Performance in Concrete Using Surface Waves (표면탄성파를 활용한 콘크리트 균열 보수 성능 평가 기법)

  • Ahn, Eunjong;Kim, Hyunjun;Gwon, Seongwoo;Sim, Sung-Han;Lee, Kwang Myong;Shin, Myoungsu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.496-502
    • /
    • 2017
  • The purpose of this study is to investigate the applicability of surface-wave techniques for the evaluation of the crack-repairing performance of an epoxy injection method in concrete. In this study, box-shaped concrete specimens with four different crack depths were made with identical mix proportions. The specimens with different crack depths were completely repaired using the same epoxy injection method. The spectral energy transmission ratio of surface waves is used as an index to differentiate the effects of crack depth and crack-repairing performance. The decrease of spectral energy transmission ratio in accordance with the increase of crack depth was identified before repairing. Furthermore, the spectral energy transmission ratio increased after the crack-repairing process in all specimens. The spectral energy transmission ratio is considered as a great indicator for estimating the crack-repairing performance of the epoxy injection method; the ratio was recovered up to almost 95% of the uncracked condition.

Structural Performance Evaluation of Recycled PET Fiber Reinforced RC Slab (재생 PET 섬유가 보강된 RC 슬래브의 구조성능 평가)

  • Kim, Sung Bae;Kim, Jang Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.114-123
    • /
    • 2013
  • This study was performed to verify the structural reinforcing effect of recycled polyethylene terephthalate (PET) fiber. In order to verify the structural reinforcing capacity of RPET fiber, recycled PET fiber added RC slab specimens were prepared to examine the flexural capacity while those of plain concrete and those of added with PP fiber, and the behavior of the specimens were also evaluated. The result shows that the compressive strength reduces as the fiber volume fraction increases, and the rate of reduction varies from 2% to 7%. The result of the flexural capacity shows that the ultimate capacity of plain specimens is the highest compare to those fiber reinforced specimens, but it has shown that specimens reinforced by 5% PET fiber has the highest energy absorption and the ductility index. In the application of PET fiber in slab specimens has shown that ductility capacity have increased where the ultimate capacity decreasing. That is the different tendency of beam specimens, which the ultimate capacity and the ductility of those have both shown the improvement compare to plain concrete specimens, which means the reinforcing effect of PET fiber in slab is less strong than in beam. Therefore, the application of PET fiber in slab structures as reinforcement needs the proper mix proportion of concrete and volume fraction of PET fiber with deep consideration of the structures.