• Title/Summary/Keyword: concrete lining

Search Result 319, Processing Time 0.038 seconds

Ground vibrations due to underground trains considering soil-tunnel interaction

  • Yang, Y.B.;Hung, H.H.;Hsu, L.C.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.157-175
    • /
    • 2008
  • A brief review of the research works on ground vibrations caused by trains moving in underground tunnels is first given. Then, the finite/infinite element approach for simulating the soil-tunnel interaction system with semi-infinite domain is summarized. The tunnel is assumed to be embedded in a homogeneous half-space or stratified soil medium. The train moving underground is modeled as an infinite harmonic line load. Factors considered in the parametric studies include the soil stratum depth, damping ratio and shear modulus of the soil with or without tunnel, and the thickness of the tunnel lining. As far as ground vibration is concerned, the existence of a concrete tunnel may somewhat compensate for the loss due to excavation of the tunnel. For a soil stratum resting on a bedrock, the resonance peak and frequency of the ground vibrations caused by the underground load can be rather accurately predicted by ignoring the existence of the tunnel. Other important findings drawn from the parametric studies are given in the conclusion.

TWO TONNEL PROJECTS IN SWELLING ROCKS

  • Lee, Young-Nam;Ha, H.B.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1990.10a
    • /
    • pp.35-50
    • /
    • 1990
  • This paper describes the importance of incorporating the titre-dependent deformation behaviour in the design and construction of tunnels in swelling rocks. Two tunnel projects, in which authors got involved in Canada, are chosen to demonstrate the importance. In diversion tunnels for Oldman River Dan Projects time-dependent deformation characteristics of the mudrocks obtained from teat tunnel program were neglected in the design and construction of the tunnels and several sectional of concrete lining in tunnels were cracked extensively. In SABNGS No.3 Projects an extensive experimental program was carried out to study time-dependent deformation behaviour of highly swelling Queenston shale, with the air of establishing the constitutional relationship for the rock-structure time interaction analysis.

  • PDF

Case Study on defects of Tunnel Drainage in Subway (지하철의 터널 배수체계에 따른 결함 사레)

  • Kim Suk-Cho;Lee Jae-Uk;Cho Sung-Woo;Shin Yong-Suk
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.292-298
    • /
    • 2005
  • Tunnel in subway should be designed as a water-proof type tunnel as much as possible but it is difficult to make it come true due to several facts, such as construction technique and cost. A drainage type tunnel as a substitute of a water-proof tunnel lead to the increase of water pressure on the concrete lining that make bad effect to tunnel structure when it has some problem to operate the drainage system. Throughout studying about cases on defects of tunnel drainage in subway We hope it contributes to tunnel maintenance.

  • PDF

An Experimental Study on the Fire Damage Evaluation of the Concrete Lining (콘크리트 라이닝의 화재손상 평가에 관한 실험적 연구)

  • Park, Kyung-Hoon;Kim, Heung-Youl;Yoo, Yong-Ho;Kim, Hyung-Jun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.201-206
    • /
    • 2011
  • 최근 국내에서는 대심도 터널 시공계획이 발표되면서 터널 구조물에 대한 방재 및 내화설계에 대한 관심이 높아지고 있다. 화재 발생 시 문제가 발생할 수 있는 콘크리트 라이닝의 내화설계를 위해서는 보다 구체적인 내화성능을 측정하기 위한 내화실험이 실시되어야 한다. 현재 국내에서는 건축물의 내화성능을 평가하기 위한 시험평가 방법이 제시되어 있는 상태이나 터널 구조물에 대한 시험법이나 성능평가는 거의 전무한 상황이다. 따라서 본 연구에서는 콘크리트 구조물의 화재손상 정도를 평가하기 위해 현장에서 사용되고 있는 터널 라이닝을 대상으로 화재 시 콘크리트 라이닝의 손상정도를 평가하였다. 실험은 대표적인 터널 화재시나리오 곡선인 RABT 화재 시나리오를 적용하였으며 폭렬방지에 효과적인 것으로 알려져있는 fiber cocktail(강섬유+폴리프로필렌섬유)의 혼입여부에 따른 성능평가도 함께 실시하였다.

  • PDF

Numerical Analysis of NDT Using Elastic Stress Waves in Concrete Lining (터널 라이닝내부에서 전파되는 탄성응력파를 이용한 수치해석적 비파괴검사)

  • 김문겸;이재영
    • Computational Structural Engineering
    • /
    • v.11 no.3
    • /
    • pp.187-198
    • /
    • 1998
  • 지하구조물의 건전성을 평가하기 위한 비파괴시험으로써 탄성응력파를 이용한 충격반향탐사법을 수치해석적인 방법을 통하여 수행하였다. 즉, 일면만으로 접근 가능한 터널 면에서의 충격가진과 동적응답의 측정으로 이질면을 포함한 내부의 상태를 예측할 수 있다. 연구의 수행은 탄성거동을 하는 매질 내부에서 전파되는 탄성응력파의 특성을 이해하고, 이를 동적 유한요소해석으로 모형화하여 충격반향탐사법을 수치해석적으로 수행한다. 이질재료가 2개의 층을 이루고 있는 경우 표면층의 두께를 쉽게 측정할 수 있었으며, 구조물의 병진운동, 휨운동과 구조물 내에서 다중반사되는 탄성응력파에 의한 복합적인 영향을 받는 터널과 같은 원통형 구조물에서 동적응답의 주파수 특성으로부터 터널라이닝 내부에 형성된 공동의 위치와 크기의 예측이 가능하였다. 수치해석적인 방법과 병행하여 다양한 형태의 경계조건을 가지는 구조물에 대한 충격반향탐사법의 실험을 수행할 경우 실제적인 문제에 적용, 건전성 평가의 지표를 마련할 수 있을 것으로 사료된다.

  • PDF

A Study on the Design/construction Standard of Unlined Tunneling Method (Unlined Tunnel 공법 지보재의 설계 및 시공 기준 고찰)

  • 서영화;김성구;나승훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.121-134
    • /
    • 2002
  • Tunneling is a very dangerous and expansive work. Especially, the concrete lining works need many long hours and much cost. As an alternative, the unlined tunneling methods including NMT have been developed in various country. These methods have advantages in cost, time and quality. In Korea, many considerations have been conducted to apply the unlined tunneling method in comparatively good rock. Since primary reinforcements play the role of the final supporting system in unlined tunnels, the initial stiffness and long term durability of reinforcements are very important for tunnel safety. To establish the reinforcements standard suitable to Korea, we investigated the foreign standards and construction cases, comparing geological and construction conditions of foreign land and Korea. As the result, we have proposed the standard of primary supporting system for unlined tunnel in aspects of material, design, construction and quality control etc.

  • PDF

Case Study on the Impact-Echo Method for Tunnel Safety Diagnosis (터널 안전진단을 위한 충격반향법 사례 연구)

  • Shin, Sung-Ryul;Jo, Cheol-Hyun
    • Tunnel and Underground Space
    • /
    • v.19 no.1
    • /
    • pp.19-30
    • /
    • 2009
  • For the purpose of determining the thickness of concrete lining and detect of the cavity where may be located behind tunnel lining, IE (Impact-Echo) method it effectively useful in the tunnel safety diagnosis and the quality control during the construction. As a part of case study, we applied IE method to various tunnel structure types such as road tunnel and subway tunnel constructed by NATM (New Austrian Tunnelling Method) and ASSM (American Steel Support Method). As tunnel specifications estimated from this method were compared with coring data, design drawing and other survey results, it was very good agreement with each other. In conclusion, we verified that IE method shows an accurate and reliable result. The conventional interpretation of IE method in frequency domain gives only vertical information at a certain point. However, the interpretation using time-frequency analysis and depth section imaging technique from two dimensional profiling surveys can show more reliable information about structure inside.

Setting Time and Compressive Strength Gains of Glycocalix Coating Materials with Silica-based Accelerating Agents (실리케이트계 급결제를 혼입한 글라이코 캘릭스 코팅재의 응결시간 및 압축강도 발현 특성)

  • Jeong, Yun-Ji;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.105-111
    • /
    • 2020
  • The present study examined the effect of the silica-based accelerating agents on the setting time and compressive strength gain of biomimetic glycocalix coating materials that has been developed for protecting the substrate of concrete exposed to chemical and microbiological attacks. The accelerating agent contents varied from 10mL/L to 40mL/L in the mixtures of glycocalix coating materials determined for shotcrete and lining techniques. Test results showed that the setting time of coating materials containing accelerating agents was affected by the contents of the bacteria carrier. When the accelerating agent content was 40mL/L, the final setting time was 80 minutes for shotcrete mixtures and 318 minutes for lining mixtures. Meanwhile, the compressive strength gain of coating materials with accelerating agents tended to be lower than that of counterpart materials without accelerating agents.

Alteration of mechanical properties of tunnel structural members after a tunnel fire accident (화재 후 터널구조물 시공재료의 역학적 특성변화)

  • Chang, Soo-Ho;Choi, Soon-Wook;Kwon, Jong-Wook;Kim, Sang-Hwan;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.157-169
    • /
    • 2007
  • This study aimed to quantify the deterioration of tunnel structural members such as concrete lining and shotcrete lining after a tunnel fire accident by measuring their mechanical properties between $300^{\circ}C$ and $1,000^{\circ}C$. From the experiments, it was revealed that the critical temperature where mechanical properties start to decrease linearly was approximately $300^{\circ}C$. In addition, the other critical temperature where macro-cracks are induced in specimens was around $600^{\circ}C$. From a series of regression analysis, the optimum regression function with correlation coefficients over 0.99 for mechanical properties at different temperature levels was obtained as the Boltzmann function. Finally, a schematic diagram to estimate temperature distribution inside structural members as well as their mechanical properties at corresponding temperature levels quantitatively was newly proposed for RABT and RWS fire scenarios.

  • PDF

Evaluation of Fire-induced Damage for Shield Tunnel Linings Subjected to High Temperatures (고온에 노출된 쉴드터널 라이닝의 손상평가)

  • Lee, Chang Soo;Kim, Yong Hyok;Kim, Young Ook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • The aim of this study is to evaluate fire-induced damage for shield tunnel linings. Full-scale fire test was conducted to evaluate fire-induced damage. Residual compressive strength was measured on the core samples of shield tunnel lining subjected to high temperatures. Heating temperature was predicted by XRD and TG analysis. As a result, Strength degradation of concrete with temperatures can be evaluated by residual compressive strength of core samples. In addition, residual compressive strength can be estimated by previous studies if heating temperature is exactly predicted. It is possible that heating temperature is predicted by XRD and TG analysis at $450^{\circ}C$. For more accurate prediction of heating temperature it should be performed both instrumental analysis and analytical methods with temperatures ranging from $400{\sim}600^{\circ}C$.