• Title/Summary/Keyword: concrete gravity dams

Search Result 44, Processing Time 0.019 seconds

The Analysis for Dynamic Behavior Characteristics of Concrete Gravity Dams (콘크리트 중력식 댐의 동적 거동 특성 분석)

  • Koo Min-Se;Park Kuk-Dong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.393-399
    • /
    • 2005
  • The purpose of this study is to suggest some references of maintenance and design of concrete gravity dams by analyzing dynamic characteristics in x, y, z directions. It is considered as additional mass, soil interaction for numerical dynamic analysis for gravity concrete dams in Han River basin as some cases. The result shows that the overflow structure can be possibly underestimated for the evaluation of the seismic performance using seismic intensity, modified seismic intensity methods. A much more research is still necessary for the evaluation of comprehensive seismic performance of concrete gravity dam

  • PDF

Seismic behavior of concrete gravity dams

  • Varughese, Jiji Anna;Nikithan, Sreelakshmi
    • Advances in Computational Design
    • /
    • v.1 no.2
    • /
    • pp.195-206
    • /
    • 2016
  • Dams play a vital role in the development and sustainment in a country. Failure of dams leads to the catastrophic event with sudden release of water and is of great concern. Hence earthquake-resistant design of dams is of prime importance. The present study involves static, modal and transient analyses of dam-reservoir-foundation system using finite element software ANSYS 15. The dam and the foundation are modeled with 2D plane strain element "PLANE 42" and the reservoir by fluid acoustic element "FLUID 29" with proper consideration of fluid-structure interaction. An expression for the fundamental period of concrete dams is developed based on modal analysis. Seismic response of gravity dams subjected to earthquake acceleration is evaluated in terms of peak displacement and stress.

Seismic Safety Evaluation of Concrete Gravity Dams Considering Dynamic Fluid Pressure (동수압을 고려한 콘크리트 중력식 댐의 내진안전성 평가)

  • Kim, Yoog-Gon
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.120-132
    • /
    • 2006
  • Seismic safety evaluation of concrete gravity dams is very important because failure of concrete gravity dam may incur huge loss of life and properties around the dam as well as damage to dam structure itself. Recently, there has been growing much concerns about earthquake resistance or seismic safety of existing concrete gravity darns designed before current seismic design provisions were implemented. This research develops the dynamic fluid pressure calculation using 'added mass simulation'. The actual analysis using structural analysis package was performed. According to the analysis results, the vibration which is transverse to water flow seems to be very critical depending on the shape of the dam.

Dam-reservoir-foundation interaction effects on the modal characteristic of concrete gravity dams

  • Shariatmadar, H.;Mirhaj, A.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.1
    • /
    • pp.65-79
    • /
    • 2011
  • Concrete hydraulic structures such as: Dams, Intake Towers, Piers and dock are usually recognized as" Vital and Special Structures" that must have sufficient safety margin at critical conditions like when earthquake occurred as same as normal servicing time. Hence, to evaluate hydrodynamic pressures generated due to seismic forces and Fluid-Structure Interaction (FSI); introduction to fluid-structure domains and interaction between them are inevitable. For this purpose, first step is exact modeling of water-structure and their interaction conditions. In this paper, the basic equation involved the water-structure-foundation interaction and the effective factors are explained briefly for concrete hydraulic structure types. The finite element modeling of two concrete gravity dams with 5 m, 150 m height, reservoir water and foundation bed rock is idealized and then the effects of fluid domain and bed rock have been investigated on modal characteristic of dams. The analytical results obtained from numerical studies and modal analysis show that the accurate modeling of dam-reservoir-foundation and their interaction considerably affects the modal periods, mode shapes and modal hydrodynamic pressure distribution. The results show that the foundation bed rock modeling increases modal periods about 80%, where reservoir modeling changes modal shapes and increases the period of all modes up to 30%. Reservoir-dam-foundation interaction increases modal period from 30% to 100% for different cases.

Dynamic response of concrete gravity dams using different water modelling approaches: westergaard, lagrange and euler

  • Altunisik, A.C.;Sesli, H.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.429-448
    • /
    • 2015
  • The dams are huge structures storing a large amount of water and failures of them cause especially irreparable loss of lives during the earthquakes. They are named as a group of structures subjected to fluid-structure interaction. So, the response of the fluid and its hydrodynamic pressures on the dam should be reflected more accurately in the structural analyses to determine the real behavior as soon as possible. Different mathematical and analytical modelling approaches can be used to calculate the water hydrodynamic pressure effect on the dam body. In this paper, it is aimed to determine the dynamic response of concrete gravity dams using different water modelling approaches such as Westergaard, Lagrange and Euler. For this purpose, Sariyar concrete gravity dam located on the Sakarya River, which is 120km to the northeast of Ankara, is selected as a case study. Firstly, the main principals and basic formulation of all approaches are given. After, the finite element models of the dam are constituted considering dam-reservoir-foundation interaction using ANSYS software. To determine the structural response of the dam, the linear transient analyses are performed using 1992 Erzincan earthquake ground motion record. In the analyses, element matrices are computed using the Gauss numerical integration technique. The Newmark method is used in the solution of the equation of motions. Rayleigh damping is considered. At the end of the analyses, dynamic characteristics, maximum displacements, maximum-minimum principal stresses and maximum-minimum principal strains are attained and compared with each other for Westergaard, Lagrange and Euler approaches.

New Paradigm on the Safety Check of Concrete Gravity Dams at Earthquake (중력식댐의 지진시 안전검토에 대한 뉴 패러다임)

  • Bae, Jung-Joo;Kim, Yon-Gon;Lee, Jee-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.86-92
    • /
    • 2009
  • In the safety check of gravity dams at earthquake, there have been two types of analysis conducted simultaneously; one is stability analysis and the other stress analysis. But those are essentially the same calculation other than the former considers the dams rigid, while the latter considers the dams' dynamic characteristics which results in the amplification of response acceleration on the upper part of dam body. In this paper, the identity of those two methods is verified by example calculation in terms of stability check of gravity dam. It can be concluded that if stress analysis were performed, stability check of gravity dam could be accomplished with the results from stress analysis, removing unnecessary present dual calculation practice.

Earthquake stresses and effective damping in concrete gravity dams

  • Akpinar, Ugur;Binici, Baris;Arici, Yalin
    • Earthquakes and Structures
    • /
    • v.6 no.3
    • /
    • pp.251-266
    • /
    • 2014
  • Dynamic analyses for a suite of ground of motions were conducted on concrete gravity dam sections to examine the earthquake induced stresses and effective damping. For this purpose, frequency domain methods that rigorously incorporate dam-reservoir-foundation interaction and time domain methods with approximate hydrodynamic foundation interaction effects were employed. The maximum principal tensile stresses and their distribution at the dam base, which are important parameters for concrete dam design, were obtained using the frequency domain approach. Prediction equations were proposed for these stresses and their distribution at the dam base. Comparisons of the stress results obtained using frequency and time domain methods revealed that the dam height and ratio of modulus of elasticity of foundation rock to concrete are significant parameters that may influence earthquake induced stresses. A new effective damping prediction equation was proposed in order to estimate earthquake stresses accurately with the approximate time domain approach.

Existing concrete dams: loads definition and finite element models validation

  • Colombo, Martina;Domaneschi, Marco;Ghisi, Aldo
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.129-144
    • /
    • 2016
  • We present a methodology to validate with monitoring data finite element models of existing concrete dams: numerical analyses are performed to assess the structural response under the effects of seasonal loading conditions, represented by hydrostatic pressure on the upstream-downstream dam surfaces and thermal variations as recorded by a thermometers network. We show that the stiffness effect of the rock foundation and the surface degradation of concrete due to aging are crucial aspects to be accounted for a correct interpretation of the real behavior. This work summarizes some general procedures developed by this research group at Politecnico di Milano on traditional static monitoring systems and two significant case studies: a buttress gravity and an arch-gravity dam.

The influence of concrete degradation on seismic performance of gravity dams

  • Ahmad Yamin Rasa;Ahmet Budak;Oguz Akin Duzgun
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.59-75
    • /
    • 2024
  • This paper presents a dam-reservoir interaction model that includes, water compressibility, sloshing of surface water, and radiation damping at the far-end reservoir, to investigate the influence of concrete deterioration on seismic behavior along with seismic performance of gravity dams. Investigations on seismic performance of the dam body have been conducted using the linear time-history responses obtained under six real and 0.3 g normalized earthquake records with time durations from 10 sec to 80 sec. The deterioration of concrete is assumed to develop due to mechanical and chemical actions over the dam lifespan. Several computer programs have been developed in FORTRAN 90 and MATLAB programming languages to analyze the coupled problem considering two-dimensional (2D) plane-strain condition. According to the results obtained from this study, the dam structure shows critical responses at the later ages (75 years) that could cause disastrous consequences; the critical effects of some earthquake loads such as Chi-Chi with 36.5% damage and Loma with 56.2% damage at the later ages of the selected dam body cannot be negligible; and therefore, the deterioration of concrete along with its effects on the dam response should be considered in analysis and design.

Significance of rigorous fluid-foundation interaction in dynamic analysis of concrete gravity dams

  • Lotfi, Vahid
    • Structural Engineering and Mechanics
    • /
    • v.21 no.2
    • /
    • pp.137-150
    • /
    • 2005
  • Dynamic analysis of dam-reservoir-foundation system is usually carried out by employing a simplified and approximate one-dimensional model to account for fluid-foundation interaction. The approximation introduced on this basis is examined thoroughly in this paper by comparing the method with the rigorous approach. It is concluded that the errors due to approximate method could be very significant both for horizontal and vertical ground motions.