• Title/Summary/Keyword: concrete grade

Search Result 401, Processing Time 0.025 seconds

Effect of Slag Grade and Cement Source on the Properties of Concrete

  • Becknell, Natalie Peterson;Hale, William Micah
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.2
    • /
    • pp.119-123
    • /
    • 2011
  • Presented in the paper are findings of a project that examined the effect of slag grade and cement source on the performance of concrete mixtures. Slag cement contents were 20, 40, and 60 percent of the total cementitious material content. Two grades of slag cement were examined (Gr. 100 and Gr. 120) along with two sources of Type I cement. Compressive strength, durability, and permeability were measured. The results showed that the cement source affected the early age strength of the mixtures. At 28 days of age, mixtures containing Gr. 120 slag cement had higher compressive strengths than mixtures containing Gr. 100 slag cement, but by 90 days of age, the trend reversed. As for the chloride ion penetrability, mixtures cast with Gr. 100 slag cement passed fewer coulombs at 28 and 90 days of age than similar mixtures containing Gr. 120 slag. Mixtures containing Gr. 120 slag had the greatest durability factors.

Proverb Comprehension and Use in Late Childhood : The Role of Familiarity and Concreteness of Proverbs (후기아동의 속담이해능력과 사용정도에 관한 연구 : 속담의 친숙도와 구체성을 중심으로)

  • Cho, Bokhee;Lee, Joo-Yeon
    • Korean Journal of Child Studies
    • /
    • v.28 no.5
    • /
    • pp.19-36
    • /
    • 2007
  • This study explored proverb comprehension and use in elementary school children by familarity and concreteness of proverbs and children's age, sex, experience of living with grandparents. The 529 fourth and sixth grade participants completed a questionnaire probing knowledge of 16 proverbs; 4 each in four categories(familiar-concrete, familiar-abstract, unfamiliar-concrete, and unfamiliar-abstract). Results showed highest comprehension scores for familiar-concrete proverbs. Sixth graders obtained higher comprehension score than fourth graders in all four proverb categories. There was no difference between grades in frequency of proverb usage. An interaction effect between grade and sex showed that female sixth graders had the highest comprehension score. These results suggest a possibility of relationship between figurative language and cognitive development related to abstract thinking in late school-age children.

  • PDF

Study on the Flame-retardative FREP for the Reinforced Concrete Using Flame Retardant of Non-Halogen System (비할로겐계 난연제를 이용한 콘크리트 보수, 보강용 난연 FREP에 관한 연구)

  • Yang Suk Woo;Kim Kang Youl;Song Hun;Choi Nak Woon;Lee Chol Woong;Soh Yang Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.829-832
    • /
    • 2004
  • FREP(Fiber Reinforced Epoxy Panel), the products of our company, was widely made full use of a field of the reinforced concrete. In particular, the FREP used for repair and reinforcement of the subway and tunnel is required flame retardative property. In this study, flame retardative FREP using flame retardant of non-halogen system was fabricated by impregnation method. Flame retardative grade was the third grade. Tensile strength, flexural strength, and compressive strength was 1,384, 1,298, and $1,450kg/cm^2$, respectively.

  • PDF

Influence of the Type of Fine Aggregate on Drying Shrinkage and Durability for Concrete (잔골재 종류가 콘크리트의 건조수축과 내구성에 미치는 영향)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Yoon, Gi-Won;Han, Cheon-Goo;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.249-255
    • /
    • 2006
  • Recently, interest grew on the quality of aggregates following the diminution of primary resources from river as to grow construction demand and the low grade of nature sand like sea sand. following, need is to diversify the supply sources of fine aggregates which are excessively relying on sea sand and urgency is to find as soon as possible aggregate resources that can substitute sea sand. On the other hand, various fine aggregates we utilized to produce concrete in the domestic construction fields. However, few studies have been systematically investigated on the effects of such fine aggregates on concrete properties. Therefore, this study examined the effects of comparatively widely used fine aggregates in the domestic construction fields on the shrinkage, durability and watertightness of concrete. Results revealed that drying shrinkage increases, and durability and watertightness degrades for concrete using crushed sand than natural fine aggregates like sea sand and river sand. Especially, the use of crushed sand exhibiting bad grain shape and grade was larger adverse effect on the quality of concrete. In addition, appropriate adjustment of the grain shape and grade during the blending of crushed sand exhibiting bad grain shape and grade with natural aggregates appeared to enhance the shrinkage and durability of concrete.

Evaluation of Chloride Behavior and Service Life in Long-Term Aged FA Concrete through Probabilistic Analysis (장기재령 FA 콘크리트에 대한 염화물 거동 및 확률론적 염해 내구수명 평가)

  • Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.276-285
    • /
    • 2020
  • In this study, accelerated chloride diffusion tests were performed on OPC(Ordinary Portland Cement) and FA(Fly Ash) concrete considering three levels o f W/B(Water to Binder) ratio o n 1,095 curing days. The accelerated chloride diffusion coefficient and the passed charge were evaluated in accordance with Tang's method and ASTM C 1202, and the resistance performance to chloride attack improved over time. FA concrete showed excellent resistance performance against chloride penetration with help of pozzolanic reaction. As the result of the passed charge, FA concrete showed durability improvement, "low" grade to "very low" grade, but OPC concrete changed "moderate" grade to "low" grade at 1,095 curing days. After assuming the design variables used for durability design as normal distribution functions, the service life of each case was evaluated by the probabilistic analysis method based on MCS(Monte Carlo Simulation). In FA concrete, the increase of probability of durability failure was lower than that of OPC concrete with increasing time, because the time-dependent coefficient of FA concrete was up to 3.2 times higher than OPC concrete. In addition, the service life by probabilistic analysis was evaluated lower than the service life by deterministic analysis, since the target probability of durability failure was set to 10%. It is considered that more economical durability design will be possible if the mo re suitable target probability of durability failure is set for various structures through researches on actual conditions and indoor tests under various circumstances.

Seismic behaviors of ring beams joints of steel tube-reinforced concrete column structure

  • Zhang, Yingying;Pei, Jianing;Huang, Yuan;Lei, Ke;Song, Jie;Zhang, Qilin
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.417-426
    • /
    • 2018
  • This paper presents the seismic behaviors and restoring force model of ring beam joints of steel tube-reinforced concrete column structure under cyclic loading. First, the main failure mode, ultimate bearing capacity, stiffness degradation and energy dissipation capacity are studied. Then, the effects of concrete grade, steel grade, reinforcement ratio and radius-to-width ratios are discussed. Finally, the restoring force model is proposed. Results show that the ring beam joints of steel tube-reinforced concrete column structure performs good seismic performances. With concrete grade increasing, the ultimate bearing capacity and energy dissipation capacity increase, while the stiffness degradation rates increases slightly. When the radius-width ratio is 2, with reinforcement ratio increasing, the ultimate bearing capacity decreases. However, when the radius-to-width ratios are 3, with reinforcement ratio increasing, the ultimate bearing capacity increases. With radius-to-width ratios increasing, the ultimate bearing capacity decreases slightly and the stiffness degradation rate increases, but the energy dissipation capacity increases slightly.

Investigation on the Properties of the Lightweight Foamed Concrete in Response to Fine Grains Contents (미세립자 혼입율 변화에 따른 경량기포 콘크리트 특성분석)

  • Choi, Sung-Yong;Park, Yong-Kyu;Jeong, Kwang-Bok;Kim, Sung-Soo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.47-50
    • /
    • 2007
  • This study investigates the properties of light weight foamed concrete (LWC) designed with various content of fine grains (FG). Test showed that LWC containing diverse powder materials with addition, more than 15% of FG, tended to decrease the fluidity of fresh concrete. 10% of FG content in LWC exhibited 4mm in sinking depth, which is the lowest value. This value dramatically increased at more than 15% of addition. However the concrete incorporating LSP proportionally increased the sinking depth in overall. As for the strength, the values of all specimens were under standardization of KS, except for the concrete adding 5 and 10% of FG. Apparent density of LWC showed the lowest value when used 10% of FG which was satisfied the 0.5 grade in KS. For the thermal conductivity, it was also indicated at 0.5 grade in KS, which is under $0.160W/(m{\cdot}k)$. In conclusion, it is demonstrated that adding 10% of FG in LWC was effective in the aspects of recycling of materials, cost effectiveness and quality.

  • PDF

Reliability studies on RC beams exposed to fire based on IS456:2000 design methods

  • Balaji, Aneesha;Aathira, M.S.;Pillai, T.M. Madhavan;Nagarajan, Praveen
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.853-866
    • /
    • 2016
  • This paper examines a methodology for computing the probability of structural failure of reinforced concrete beams subjected to fire. The significant load variables considered are dead load, sustained live load and fire temperature. Resistance is expressed in terms of moment capacity with random variables taken as yield strength of steel, concrete class (or grade of concrete), beam width and depth. The flexural capacity is determined based on the design equations recommended in Indian standard IS456:2000. Simplified method named $500^{\circ}C$ isotherm method detailed in Eurocode 2 is incorporated for fire design. A transient thermal analysis is conducted using finite element software ANSYS$^{(R)}$ Release15. Reliability is evaluated from the initial state to 4h of fire exposure based on the first order reliability method (FORM). A procedure is coded in MATLAB for finding the reliability index. This procedure is validated with available literature. The effect of various parameters like effective cover, yield strength of steel, grade of concrete, distribution of reinforcement bars and aggregate type on reliability indices are studied. Parameters like effective cover of concrete, yield strength of steel has a significant effect on reliability of beams. Different failure modes like limit state of flexure and limit state of shear are checked.

Effect of Horizontal Resistance at Slab Bottom on Behavior of Concrete Slabs-on-Grade under Vertical Loads (지반위에 놓인 콘크리트 슬래브의 수직하중에 대한 슬래브 하부의 수평 저항의 영향 분석)

  • Shim, Jae-Soo;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.141-150
    • /
    • 2005
  • The behavior of the concrete slabs-on-grade considering the horizontal resistance at the slab bottom, which exists due to the shear resistance of the foundation and the friction between the slab and the foundation, has been investigated when the slabs-on-grade are subjected to the vertical load. Analytical formulations have been developed to include the effect of the horizontal resistance at the slab bottom, and the solutions have been obtained in the transformed field domain using the Fourier transform. Finite element formulations have also been developed using the plate bending elements and the flat shell elements. The solutions from the analytical and numerical models have been compared and showed very good agreement. The sensitivity of the horizontal resistance to the stresses of the concrete slab has been investigated with various values of the slab thickness, elastic modulus, and vertical stiffness of the foundation. The analysis results show that the horizontal resistance at the plate bottom can significantly affect the stresses of the slab.

  • PDF

Influence of the Type of Fine Aggregate on Concrete Properties (잔골재 종류가 콘크리트의 물성에 미치는 영향)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Yoon, Gi-Won;Han, Cheon-Goo;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.459-467
    • /
    • 2006
  • Recently, interest grew on the quality of aggregates following the diminution of primary resources from river as to grow construction demand and the low grade of nature sand like sea sand. Following, need is to diversify the supply sources of fine aggregates which are excessively relying on sea sand and urgency is to find as soon as possible aggregate resources that can substitute sea sand. On the other hand, various fine aggregates are utilized to produce concrete in the domestic construction fields. However, few studies have been systematically investigated on the effects of such fine aggregates on concrete properties. Therefore, this study examined the effects of comparatively widely used fine aggregates in the domestic construction fields on the quality of concrete through the analysis of the effects of such fine aggregates on the physical properties of fresh concrete and strength of hardened concrete. Results revealed that crushed sand degraded the fluidity and air entraining of concrete compared to natural aggregates like sea sand and river sand. Especially, the use of crushed sand exhibiting bad grain shape and grade was larger adverse effect on the physical properties of concrete. The type of fine aggregates appeared to have negligible influence on the strength for W/C of 55%, 45% while crushed sand decreased the strength for W/C of 35% compared to natural aggregates. It analyzed that the combination of crushed sand exhibiting bad grain shape and grade with natural aggregates improved the characteristics of fresh concrete and had negligible influence on the strength.