• 제목/요약/키워드: concrete for pavement

검색결과 695건 처리시간 0.028초

고로슬래그 미분말을 활용한 콘크리트포장 린콘크리트 보조기층 시험 적용 (Experimental Application of the Ground Granulated Blast-Furnace Slag to the Lean Concrete Subbase Course)

  • 류명찬;유태석;엄주용;김대영;손진군
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.1091-1094
    • /
    • 2000
  • An experimental study is carried out to estimate the way of applying the granulated blast furnace slag[GBFS] to the lean concrete subbase of concrete pavement. According to the test results, this application seems promising. For this application, mixing percent of GBFS ranging from 30 to 45 is recommendable at this stage. Expected benefits using GGBFS in the field of concrete pavement include reduced shrinkage crack, reduced pavement thickness, and extended service life.

콘크리트 포장(鋪裝)의 초기계측(初期計測)을 통한 초기거동(初期擧動) 특성분석(特性分析) (Analysis of Early Behavior of Concrete Pavement with Initial Measurements)

  • 정원경;김동호;권혁찬;윤경구
    • 산업기술연구
    • /
    • 제23권A호
    • /
    • pp.165-173
    • /
    • 2003
  • The purpose of this paper is to analysis of initial behavior of concrete pavement with initial measurement strain gauge for concrete pavement at field, and to investigate the field test results for field applicability testing. The early-age behaviors of concrete pavement slabs were measured using the strain gauges. From the slab depths and positions, the outputs from each gauges were recorded at initial curing period. The initial measurement of concrete pavement and check of crack at the joint were performed, the results could be summarized as follows. From the results of concrete strength, compressive strength and flexural strength were showed $271kgf/cm^2$, $43kgf/cm^2$ respectively. From the tests of early-age strain measurement, it was found that the strain varied at the maximum value of $150{\mu}{\varepsilon}$ and early behavior of concrete slab was showed a tensile strain. However, for long-term was showed a compressive strain due to dry-shrinkage.

  • PDF

기상과 재료 특성에 의한 공항 콘크리트 포장 팽창줄눈 간격의 적정성 검토 (Propriety Examination of Expansion Joint Spacing of Airport Concrete Pavement by Weather and Material Characteristics)

  • 박해원;정진훈
    • 한국도로학회논문집
    • /
    • 제20권3호
    • /
    • pp.65-73
    • /
    • 2018
  • PURPOSES : In this study, the propriety of expansion joint spacing of airport concrete pavement was examined by using weather and material characteristics. METHODS : A finite element model for simulating airport concrete pavement was developed and blowup occurrence due to temperature increase was analyzed. The critical temperature causing the expansion of concrete slab and blow up at the expansion joint was calculated according to the initial vertical displacement at the joint. The amount of expansion that can occur in the concrete slab for 20 years of design life was calculated by summing the expansion and contraction by temperature, alkali-silica reaction, and drying shrinkage. The effective expansion of pavement section between adjacent expansion joints was calculated by subtracting the effective width of expansion joint from the summation of the expansion of the pavement section. The temperature change causing the effective expansion of pavement section was also calculated. The effective expansion equivalent temperature change was compared to the critical temperature, which causes the blowup, according to expansion joint spacing to verify the propriety of expansion joint applied to the airport concrete pavement. RESULTS : When an initial vertical displacement of the expansion joint was 3mm or less, the blowup never occurred for 300m of joint spacing which is used in Korean airports currently. But, there was a risk of blow-up when an initial vertical displacement of the expansion joint was 5mm or more due to the weather or material characteristics. CONCLUSIONS : It was confirmed that the intial vertical displacement at the expansion joint could be managed below 3mm from the previous research results. Accordingly it was concluded that the 300m of current expansion joint spacing of Korean airports could be used without blowup by controling the alkali-silica reaction below its allowable limit.

An Experimental Study of Permeable Concrete Pavement for Practical Use in the Field

  • Kim, Seong-Soo;Jung, Ho-Seop;Moon, Han-Young
    • International Journal of Concrete Structures and Materials
    • /
    • 제19권1E호
    • /
    • pp.17-23
    • /
    • 2007
  • In rainy weather, permeable concrete pavement has advantages such as good drainage, increased skid resistance, reduced splash and spray behind vehicles for improving the safety of driving vehicles as well as reduction of the traffic noise. It also contributes to improvement of traffic environment. In this study, the fundamental properties of permeable concrete in accordance with maximum size of aggregate, sand percentage and unit cement content were investigated for practical use of permeable concrete pavement. Although the permeability standard for typical permeable asphalt-concrete pavement is $1{\times}10^{-2}cm/sec$, the researchers determined that the coefficient of permeability of the permeable concrete should be set higher at $1{\times}10^{-1}cm/sec$. Then, the researchers measured the coefficient of permeability, strength, void ratio, and continuous void ratio of the permeable concrete while varying maximum size of the aggregate, sand percentage, unit cement content for detailed analysis. It was found that the void ratio, continuous void ratio, and flexural strength were about 15%, 12%, and 5.0MPa, respectively, when the permeability of the concrete was set at $1{\times}10^{-1}cm/sec$. Given that the maximum size of aggregate was $10{\sim}13mm$, we reached the conclusion that the best mix design for permeable concrete was $0{\sim}20%$ of sand percentage and $380kg/m^3$ of unit cement content.

아스팔트 콘크리트 포장의 최소단면 보수공법 개발을 위한 기초연구 (A Preliminary Study on Effective Rehabilitation Technique of Asphalt Concrete Pavement)

  • 조명환;김낙석;조규태;진정훈
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.475-478
    • /
    • 2007
  • The major distresses in asphalt concrete pavement are rutting and fatigue cracking. Once the distresses are observed on pavement surface, an appropriate rehabilitation method should be found. Usually, asphalt patching or overlay methods are used to improve the pavement performance. The research presents the fundamental study on effective longitudinal rehabilitation methods for asphalt concrete pavements. The rehabilitation method will be applied to rutting that is occurred asphalt Pavement surface course and longitudinal cracking or fatigue cracking with light to moderate distress levels.

  • PDF

폐유리분말을 충전재로 사용한 포장용 투수성 폴리머 콘크리트의 공학적 성질 (Engineering properties of permeable polymer concrete for pavement using powdered waste glass as filler)

  • 성찬용;김태호
    • 농업과학연구
    • /
    • 제38권1호
    • /
    • pp.145-151
    • /
    • 2011
  • This study was performed to evaluate the void ratio, compressive and flexural strength, and permeability coefficient used powdered waste glass, $CaCO_3$, recycled coarse aggregate and unsaturated polyester resin to find optimum mix design of permeable polymer concrete for pavement. The void ratio and permeability coefficient of permeable concrete for pavement was decreased with increasing the powdered waste glass, respectively. The compressive strength and flexural strength was increased with increasing the powdered waste glass, respectively. In addition, this study found out that required amount of binder was decreased with increasing the powdered waste glass. This fact is expected to have economical effects during the use of powdered waste glass in the manufacture of permeable polymer concrete for pavement. Therefore, powdered waste glass and recycled coarse aggregate can be used for permeable polymer pavement.

연속철근콘크리트 포장의 횡방향 철근 설계방법 및 시공관련 이슈 검토 (Construction Issues and Design Procedure for Transverse Steel in Continuously Reinforced Concrete Pavement (CRCP))

  • 최판길;원문철
    • 한국도로학회논문집
    • /
    • 제16권4호
    • /
    • pp.1-9
    • /
    • 2014
  • PURPOSES: The objective of this study is to evaluate construction issues and design for transverse steel in continuously reinforced concrete pavement(CRCP). METHODS : The first continuously reinforced concrete pavement(CRCP) design procedure appeared in the 1972 edition of the "AASHTO Interim Guide for Design of Pavement Structures", which was published in 1981 with Chapter 3 "Guide for the Design of Rigid Pavement" revised. A theory that was accepted at that time for the analysis of steel stress in concrete pavement, called subgrade drag theory(SGDT), was utilized for the design of reinforcement of CRCP - tie bar design and transverse steel design - in the aforementioned AASHTO Interim Guide. However SGDT has severe limitations due to simple assumptions made in the development of the theory. As a result, any design procedures for reinforcement utilizing SGDT may have intrinsic flaws and limitations. In this paper, CRCP design procedure for transverse steel was introduced and the limitations of assumptions for SGDT were evaluated based on various field testing. RESULTS: Various field tests were conducted to evaluate whether the assumptions of SGDT are reasonable or not. Test results show that 1) temperature variations exist along the concrete slab depth, 2) very little stress in transverse steel, and 3) warping and curling in concrete slab from the field test results. As a result, it is clearly revealed out that the assumptions of SGDT are not valid, and transverse steel and tie bar designs should be based on more reasonable theories. CONCLUSIONS : Since longitudinal joint is provided at 4.1-m spacing in Korea, as long as joint saw-cut is made in accordance with specification requirements, the probability of full-depth longitudinal cracking is extremely small. Hence, for transverse steel, the design should be based on the premise that its function is to keep the longitudinal steel at the correct locations. If longitudinal steel can be placed at the correct locations within tolerance limits, transverse steel is no longer needed.

알칼리-골재 반응에 의한 콘크리트 포장 팽창 장기 모니터링 (Long-term Monitoring of Expansion of Cement Concrete Pavement Affected by Alkali-Aggregate Reaction)

  • 홍승호;심영환
    • 한국도로학회논문집
    • /
    • 제17권2호
    • /
    • pp.13-20
    • /
    • 2015
  • PURPOSES: This paper describes the expansion caused by the alkali-aggregate reaction (AAR) in concrete pavement currently in service. It also discusses the effects of joints installed to release the stress induced by the AAR expansion. METHODS: The expansion effect on concrete pavement was verified by a visual inspection and long-term measurement of the joint width of a cut-section. The behaviors of 16 newly installed joints were monitored as part of the investigation and long-term monitoring was carried out for three years after cutting. RESULTS: The behavior of a bridge was affected when AAR occurred in the connected pavement. The newly installed joints shrank in the longitudinal direction of the bridge after cutting. The width of the joints decreased over the six months after cutting. A large portion of the joint width (8.5cm) was found to have closed nine months after cutting. It had ultimately shrunk by about 92 percent when the final measurement was taken. CONCLUSIONS : The expansion of the pavement due to AAR was quantitatively described by visual inspection and the long-term monitoring of the newly cut joints. However, the width of the new joints decreased over the six to nine months after cutting. Additional research should be conducted to determine a means of controlling the expansion due to AAR in the pavement.

레드머드를 혼화재료로 사용한 친환경 흙포장의 압축강도 및 시공특성 (Compressive Strength and Construction Characteristics of Environmentally Friendly Soil Concrete Pavement Using Red Mud Admixture)

  • 홍종현
    • 한국환경과학회지
    • /
    • 제21권9호
    • /
    • pp.1059-1068
    • /
    • 2012
  • The purpose of this study was to develope the environmentally favorable method of roller compacted soil concrete pavement using industrial waste red mud. Red mud was the major solid waste produced in the process of alumina extraction from bauxite(Bayer process). For recycling purpose, red mud was treated and applied to use as concrete admixtures. To this end, laboratory test such as compressive strength of soil concrete, and field test such as construction characteristics of soil concrete pavement, had been conducted. From the study results, the compressive strength of soil concrete was strongly related to its matrix proportion and compaction energy. The optimum mix proportion was comprised of cement 300 $kg/m^3$, water 110 $kg/m^3$, fine aggregate 600 $kg/m^3$, course aggregate 1400 $kg/m^3$, red mud admixture 50 $kg/m^3$ and compaction energy above 2.86 $cm-kgf/m^3$. The $7^{th}$-day and $28^{th}$-day mean compressive strength of soil concrete were 43.8 MPa and 53.3 MPa each under the optimum condition. Pavement application of soil concrete using red mud admixture indicated that the proposed method was simple in case of construction and showed a good surface texture.

강상판형교 교면포장 공법 비교 연구 (A Comparative Study on Pavement Techniques for Steel Bridge Decks)

  • 김낙석
    • 한국재난정보학회 논문집
    • /
    • 제8권2호
    • /
    • pp.100-107
    • /
    • 2012
  • 본 연구의 주 목적은 교면포장 공법 중에서 인천대교에 사용된 구스 아스팔트와 귤현 대교에 사용된 SMA의 적용 사례를 통하여 발전된 교면포장 공법을 제시하는데 있다. 두 공법의 시공사례를 비교 분석한 결과, 구스 아스팔트는 고온에서의 유동저항성이 작아 소성변형에 취약하며, 이에 반하여 SMA포장은 유지관리에 용이하고 소성변형 등에 유리하다는 것을 알 수 있었다. 이러한 결과는 강상판 교면포장 공법이 발달된 선진국에서는 보편화되어서, 그에 따른 국내에서의 해결방안을 제시하였다. 그러나, 국내의 경우 다양한 시공 실적이 미흡한 실정이어서 향후 적절한 시공관리와 체계적인 연구를 통하여 보다 발전된 교면 포장공법이 제시되어져야 할 것으로 사료된다.