• Title/Summary/Keyword: concrete filled steel sections

Search Result 62, Processing Time 0.027 seconds

Ultimate moment capacity of foamed and lightweight aggregate concrete-filled steel tubes

  • Assi, Issam M.;Qudeimat, Eyad M.;Hunaiti, Yasser M.
    • Steel and Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.199-212
    • /
    • 2003
  • An experimental investigation of lightweight aggregate and foamed concrete contribution to the ultimate strength capacity of square and rectangular steel tube sections is presented in this study. Thirty-four simply supported beam specimens, 1000-mm long, filled with lightweight aggregate and foamed concretes were tested in pure flexural bending to calculate the ultimate moment capacity. Normal concrete-filled steel tubular and bare steel sections of identical dimensions were also tested and compared to the filled steel sections. Theoretical values of ultimate moment capacity of the beam specimens were also calculated in this study for comparison purposes. The test results showed that lightweight aggregate and foamed concrete significantly enhance the load carrying capacity of steel tubular sections. Furthermore, it can be concluded from this study that lightweight aggregate and foamed concretes can be used in composite construction to increase the flexural capacity of the steel tubular sections.

Axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel hollow sections

  • Dai, X.;Lam, D.
    • Steel and Composite Structures
    • /
    • v.10 no.6
    • /
    • pp.517-539
    • /
    • 2010
  • This paper presents the axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel and carbon steel hollow sections. The finite element method developed via ABAQUS/Standard solver was used to carry out the simulations. The accuracy of the FE modelling and the proposed confined concrete stress-strain model were verified against experimental results. A parametric study on stub concrete-filled columns with various elliptical hollow sections made with stainless steel and carbon steel was conducted. The comparisons and analyses presented in this paper outline the effect of hollow sectional configurations to the axial compressive behaviour of elliptical concrete-filled steel tubular columns, especially the merits of using stainless steel hollow sections is highlighted.

Monitoring degradation in concrete filled steel tubular sections using guided waves

  • Beena, Kumari;Shruti, Sharma;Sandeep, Sharma;Naveen, Kwatra
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.371-382
    • /
    • 2017
  • Concrete filled steel tubes are extensively applied in engineering structures due to their resistance to high tensile and compressive load and convenience in construction. But one major flaw, their vulnerability to environmental attack, can severely reduce the strength and life of these structures. Degradation due to corrosion of steel confining the concrete is one of the major durability problems faced by civil engineers to maintain these structures. The problem accelerates as inner surface of steel tube is in contact with concrete which serves as electrolyte. If it remains unnoticed, it further accelerates and can be catastrophic. This paper discusses a non-destructive degradation monitoring technique for early detection corrosion in steel tubes in CFST members. Due to corrosion, damage in the form of debonding and pitting occurs in steel sections. Guided ultrasonic waves have been used as a feasible and attractive solution for the detection and monitoring of corrosion damages in CFST sections. Guided waves have been utilized to monitor the effect of notch and debond defects in concrete filled steel tubes simulating pitting and delamination of steel tubes from surrounding concrete caused by corrosion. Pulse transmission has been used to monitor the healthy and simulated damaged specimens. A methodology is developed and successfully applied for the monitoring of concrete filled steel tubular sections undergoing accelerated chloride corrosion. The ultrasonic signals efficiently narrate the state of steel tube undergoing corrosion.

Failure of lightweight aggregate concrete-filled steel tubular columns

  • Ghannam, Shehdeh;Jawad, Yahia Abdel;Hunaiti, Yasser
    • Steel and Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • Tests on steel tubular columns of square, rectangular and circular section filled with normal and lightweight aggregate concrete were conducted to investigate the failure modes of such composite columns. Thirty-six full scale columns filled with lightweight and normal weight aggregate concrete, eighteen specimens for each, were tested under axial loads. Nine hollow steel sections of similar specimens were also tested and results were compared to those of filled sections. The test results were illustrated by a number of load-deflection and axial deformation curves. The results showed that both types of filled columns failed due to overall buckling, while hollow steel columns failed due to bulging at their ends (local buckling). According to the above-mentioned results, and due to low specific gravity and thermal conductivity of the lightweight concrete the further interest should be concentrated in replacing the normal concrete by the lightweight aggregate concrete.

An Experimental Study on the Compression Behavior of the Circular and Square Tubular Steel Pipe filled with Concrete (콘크리트 충전 원형 및 각형 합성 강관 기둥의 압축 거동에 관한 실험적 연구)

  • Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.1 s.19
    • /
    • pp.55-63
    • /
    • 2006
  • Concrete-filled steel columns consist of circular, square or rectangular hollow sections filled concrete. Much research has studied for the behavior of concrete-filled steel structures. The advantages from structural point of view are the triaxial confinement of the concrete within the section, and the fire resistance of the column which largely depends on the residual capacity of the concrete core. The axial capacity of a concrete-filled rectangular or circular section is enhanced by the confining effect of the steel section on the concrete which depends in the magnitude on the shape of the section and the length of the column. Buckling tends to reduce the benefit of confinement on the squash load as the column slenderness increases. In circular sections it is possible to develop the cylinder strength of the concrete. When compare with reinforced concrete columns, the concrete-filled composite column possesses much better strength and ductility in shear and generally in flexure also. Many researches are being conducted about concrete filled steel column to get these advantages in building design. In this paper it is provided to the basic experimental study of compression behavior of the circular and rectangular tubular steel pipe filled with concrete.

  • PDF

Experimental study on concrete filled square hollow sections

  • Lam, Dennis;Williams, Christopher A.
    • Steel and Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.95-112
    • /
    • 2004
  • A series of tests was performed to consider the behaviour of short composite columns under axial compressive loading, covering a range of S275 and S355 grade steel square hollow section filled with normal and high strength concrete. The interaction between the steel and the concrete component is considered and the results show that concrete shrinkage has an effect on the axial strength of the column. Comparisons between Eurocode 4, ACI-318 and the Australian Standards with the findings of this research were made. Result showed the equation used by the ACI-318 and the proposed Australian Standards gave better predication for the axial capacity of concrete filled SHS columns than the Eurocode 4.

Experimental Study on Compressive Strength of Centrally Loaded Concrete Filled Square Tubular Steel Columns (중심축압(中心軸壓)을 받는 콘크리트충전(充塡) 각형강관(角形鋼管)기둥의 내력(耐力)에 관한 실험적(實驗的) 연구(硏究))

  • Kim, Jong Sung;Oh, Yun Tae;Kwon, Young Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.59-76
    • /
    • 1996
  • Concrete filled steel tube column has a large load carrying capacity through its steel and concrete interaction which makes it useful in construction. However, it has not been used often in a practical construction field. This is partly due to the non-destructive inspection method for concrete filling which has yet to be established. Furthermore, there are the lack of test data and a practical method in evaluating the ultimate load carrying capacity of concrete filled steel tube column. This paper will attempt to predict the ultimate strength of short concrete filled square tubular steel columns through conducting several tests. To accumulate the new test data on concrete filled steel tube columns, a total of 42 specimens of steel tubular columns were monotonically tested under concentric axial force, having the slenderness ratio(${\lambda}=10,\;15,\;20$), width-thickness ratio(d/t=25.0, 33.3) and concrete strengths($F_{c}=210,\;240,\;270kg/cm^{2}$). The hollow sections and concrete filled steel columns were compared to check the lateral confinded effects by steel tube. Through these test results, we propose a coefficient k=3.64 for the strength evaluation formula(10) of concrte filled tubular steel short columns.

  • PDF

Experimental study on partially concrete-filled steel tubular columns

  • Ishizawa, T.;Nakano, T.;Iura, M.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.55-69
    • /
    • 2006
  • The results of tests conducted on 11 concrete-filled steel tubular columns were reported. Concrete was partially filled in circular steel tubular columns. The primary test parameters were radius and thickness of steel tubes, concrete height, loading patterns and attachment of diaphragm and studs. Concrete strain was measured directly by embedding strain gauges so that the effect of diaphragm on concrete confinement could be investigated. The effects of concrete height and diaphragm on ultimate strength and ductility of steel tubes were investigated. The comparisons of the test results with the existing results for rectangular cross-sections were made on the basis of ultimate strength and ductility of concrete-filled steel tubular columns.

Behaviour of cold-formed steel hollow and concrete-filled members

  • Jane Helena, H.;Samuel Knight, G.M.
    • Steel and Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.35-47
    • /
    • 2005
  • This paper presents the results of a series of tests carried out on hollow and concrete-filled coldformed steel sections subjected to axial and bending forces. The effects of eccentricity ratio and strength of in-fill on the behaviour of these sections were studied. A total of forty-eight medium sized columns and six beams were tested to failure. Extensive measurements of material properties, strains, axial shortening and lateral deflection were carried out. Interaction of local and overall buckling was observed in the tests. Failure mode observations were local buckling coupled with overall buckling. A description of the specially fabricated end fixtures for applying eccentric loading to the columns and to simulate pinned end condition is also presented. The experimental results of hollow columns are compared with the existing Indian, British and American codes of practice and the results of concrete-filled columns are compared with EC4 recommendations. It is seen that in the case of hollow columns predictions based on British and American codes of practice and in the case of concrete-filled columns predictions based on EC4 recommendations agree reasonably well with the experimental results. From the experiments it is seen that the provision of in-fill substantially increases the ultimate load carrying capacity of the order of one and a half to two times and the increase in strength of the in-filled concrete from a low grade concrete of compressive strength 24.94 MPa to a high grade concrete of compressive strength 33.26 MPa increases the ultimate load carrying capacity by one and a half times irrespective of the eccentricity of loading.

Confinement of concrete in two-chord battened composite columns

  • Szmigiera, Elzbieta
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1511-1529
    • /
    • 2015
  • This article provides an analysis of the complex character of stress distribution in concrete in stub columns consisting of two HE160A steel sections held together with batten plates and filled with concrete. In such columns, evaluating the effect of concrete confinement and determining the extent of this confinement constitute a substantially complex problem. The issue was considered in close correspondence to rectangular cross section tubular elements filled with concrete, concrete-encased columns, as well as to steel-concrete columns in which reinforcement bars are connected with shackles. In the analysis of concrete confinement in two-chord columns, elements of computational methods developed for different types of composite cross sections were adopted. The achieved analytical results were compared with calculations based on test results.