• Title/Summary/Keyword: concrete damage model

Search Result 572, Processing Time 0.026 seconds

Shear capacity of stud shear connectors with initial damage: Experiment, FEM model and theoretical formulation

  • Qi, Jianan;Wang, Jingquan;Li, Ming;Chen, Leilei
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.79-92
    • /
    • 2017
  • Initial damage to a stud due to corrosion, fatigue, unexpected overloading, a weld defect or other factors could degrade the shear capacity of the stud. Based on typical push-out tests, a FEM model and theoretical formulations were proposed in this study. Six specimens with the same geometric dimensions were tested to investigate the effect of the damage degree and location on the static behavior and shear capacity of stud shear connectors. The test results indicated that a reduction of up to 36.6% and 62.9% of the section area of the shank could result in a dropping rate of 7.9% and 57.2%, respectively, compared to the standard specimen shear capacity. Numerical analysis was performed to simulate the push-out test and validated against test results. A parametrical study was performed to further investigate the damage degree and location on the shear capacity of studs based on the proposed numerical model. It was demonstrated that the shear capacity was not sensitive to the damage degree when the damage section was located at 0.5d, where d is the shank diameter, from the stud root, even if the stud had a significant reduction in area. Finally, a theoretical formula with a reduction factor K was proposed to consider the reduction of the shear capacity due to the presence of initial damage. Calculating K was accomplished in two ways: a linear relationship and a square relationship with the damage degree corresponding to the shear capacity dominated by the section area and the nominal diameter of the damaged stud. This coefficient was applied using Eurocode 4, AASHTO LRFD (2014) and GB50017-2003 (2003) and compared with the test results found in the literature. It was found that the proposed method produced good predictions of the shear capacity of stud shear connectors with initial damage.

Plasticity Model for Directionality of Concrete Crack Damages (콘크리트 균열 손상의 방향성을 고려한 다중파괴기준 소성 모델)

  • Kim, Jae-Yo;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.655-664
    • /
    • 2007
  • The inherent characteristic of concrete tensile cracks, directional nonlocal crack damage, causes so-called rotating tensile crack damage and softening of compressive strength. In the present study, a plasticity model was developed to describe the behavior of reinforced concrete planar members In tension-compression. To describe the effect of directional nonlocal crack damage, the concept of microplane model was combined with the plasticity model. Unlike existing models, in the proposed model, softening of compressive strength as well as the tensile crack damage were defined by the directional nonlocal crack damage. Once a tensile cracking occurs, the microplanes of concrete are affected by the nonlocal crack damage. In the microplanes, microscopic tension and compression failure surfaces are calculated. By integrating the microscopic failure surfaces, the macroscopic failure surface is calculated. The proposed model was implemented to finite element analysis, and it was verified by comparisons with the results of existing shear panel tests.

Numerical and statistical analysis about displacements in reinforced concrete beams using damage mechanics

  • Pituba, Jose J. De C.;Delalibera, Rodrigo G.;Rodrigues, Fabio S.
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.307-330
    • /
    • 2012
  • This work intends to contribute for the improvement of the procedure suggested by Brazilian Technical Code that takes into account the cracked concrete stiffness in the estimative of the displacement of reinforced concrete beams submitted to service loads. A damage constitutive model accounting for induced anisotropy, plastic deformations and bimodular elastic response is used in order to simulate the concrete behaviour, while an elastoplastic behaviour is admitted for the reinforcement. The constitutive models were implemented in a program for bars structures analysis with layered finite elements. Initially, the damage model is briefly presented as well as the parametric identification of the materials that have been used in the reinforced concrete beams. After that, beams with different geometries and reinforcement area are analyzed and a statistical method (ANOVA) is employed in order to identify the main variables in the problem. Soon after, the same procedure is used with another resistance of concrete, where the compression strength is changed. The numerical responses are compared with the ones obtained by Brazilian Technical Code and experimental tests in order to validate the use of the damage model. Finally, some remarks are discussed based on responses presented in this work.

Unified plastic-damage model for concrete and its applications to dynamic nonlinear analysis of structures

  • Wu, Jian-Ying;Li, Jie
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.519-540
    • /
    • 2007
  • In this paper, the energy-based plastic-damage model previously proposed by the authors [International Journal of Solids and Structures, 43(3-4): 583-612] is first simplified with an empirically defined evolution law for the irreversible strains, and then it is extended to its rate-dependent version to account for the strain rate effect. Regarding the energy dissipation by the motion of the structure under dynamic loadings, within the framework of continuum damage mechanics a new damping model is proposed and incorporated into the developed rate-dependent plastic-damage mode, leading to a unified constitutive model which is capable of directly considering the damping on the material scale. Pertinent computational aspects concerning the numerical implementation and the algorithmic consistent modulus for the unified model are also discussed in details, through which the dynamic nonlinear analysis of damping structures can be coped with by the same procedures as those without damping. The proposed unified plastic-damage model is verfied by the simulations of concrete specimens under different quasistatic and high rate straining loading conditions, and is then applied to the Koyna dam under earthquake motions. The numerical predictions agree fairly well with the results obtained from experimental tests and/or reported by other investigators, demonstrating its capability for reproducing most of the typical nonlinear performances of concrete under quasi-static and dynamic loading conditions.

Seismic Margin Analysis of Reinforced Concrete Pier Using Damage Model Proceedings (손상모형을 이용한 철근 콘크리트 교각의 지진여유도 해석)

  • 고현무;이지호;정우영;조호현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.220-227
    • /
    • 2002
  • This study introduces the fragility analysis method for the safety evaluation of reinforced concrete pier subject to earthquake. Damage probability is calculated instead of the failure probability from definition of the damage state in the fragility curve. Not only the damage model determined by the response of structure subject to earthquake, but also the plastic-damage model which can represent the local damage is applied to fragility analysis. The evaluation method of damage state by damage variable in global structure is defined by this procedure. This study introduces the fragility analysis method considering the features of nonlinear time history behavior of reinforced concrete element and the plastic behavior of materials. At last, This study gives one of the approach method for seismic margin evaluation with the result of fragility analysis to design seismic load.

  • PDF

Finite Element Mesh Dependency in Nonlinear Earthquake Analysis of Concrete Dams (콘크리트 댐의 비선형 지진해석에서의 유한요소망 영향)

  • 이지호
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.637-644
    • /
    • 2001
  • A regularization method based on the Duvaut-Lions viscoplastic scheme for plastic-damage and continuum damage models, which provides mesh-independent and well-posed solutions in nonlinear earthquake analysis of concrete dams, is presented. A plastic-damage model regularized using the proposed rate-dependent viscosity method and its original rate-independent version are used for the earthquake damage analysis of a concrete dam to analyze the effect of the regualarization and mesh. The computational analysis shows that the regularized plastic-damage model gives well-posed solutions regardless mesh size and arrangement, while the rate-independent counterpart produces mesh-dependent ill-posed results.

Three dimensional finite element simulations of fracture tests using the Craft concrete model

  • Jefferson, A.D.;Barr, B.I.G.;Bennett, T.;Hee, S.C.
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.261-284
    • /
    • 2004
  • Two enhancements to a recently developed plastic-damage-contact model for concrete are presented. The model itself, which uses planes of degradation that can undergo damage and separation but that can regain contact according to a contact law, is described. The first enhancement is a new damage evolution function which provides a completely smooth transition from the undamaged to the damaged state and from pre-peak to post-peak regions. The second is an improved contact function that governs the potential degree of contact with increasing opening on a crack plane. The use of a damage evolution function with a pre-peak has implications for the consistent tangent matrix/stress recovery algorithm developed for the model implementation, and amendments to this algorithm to accommodate the new function are described. A series of unpublished experimental tests on notched specimens undertaken in Cardiff in the mid 1990s are then described. These include notched beam tests as well as prismatic and cylindrical torsion tests. The tests are then considered in three dimensional finite element analyses using the modified Craft model implemented in the finite element program LUSAS. Comparisons between experimental and numerical data show reasonable agreement except that the numerical simulations do not fully describe the latter stages of the softening responses for the torsion examples. Finally, it is concluded that the torsion tests described provide useful benchmark examples for the validation of three-dimensional numerical models for concrete.

Implementation of double scalar elastic damage constitutive model in UMAT interface

  • Liu, Pan Pan;Shen, Bo
    • Computers and Concrete
    • /
    • v.27 no.2
    • /
    • pp.153-162
    • /
    • 2021
  • This paper aims to simulate the isotropic elastic damage theory of Liu Jun (2012) using the self-programmed UMAT subroutine in the interface of ABAQUS. Liu Jun (2012)'s method based on the mechanic theory can not be used interactively with the currently commonly used finite element software ABAQUS. The advantage of this method in the paper is that it can interact with ABAQUS and provide a constitutive program framework that can be modified according to user need. The model retains the two scalar damage variables and the corresponding two energy dissipation mechanisms and damage criteria for considering the tensile and compressive asymmetry of concrete. Taking C45 concrete as an example, the relevant damage evolution parameters of its tensile and compressive constitutive model are given. The study demonstrates that the uniaxial tensile stress calculated by the subroutine is almost the same as the Chinese Concrete Design Specification (GB50010) before the peak stress, but ends soon after the peak stress. The stress-strain curve of uniaxial compression calculated by the subroutine is in good agreement with the peak stress in Chinese Concrete Design Specification (GB50010), but there is a certain deviation in the descending stage. In addition, this paper uses the newly compiled subroutine to simulate the shear bearing capacity of the shear key in a new structural system, namely the open-web sandwich slab. The results show that the damage constitutive subroutine has certain reliability.

A Damage Model for Reinforced Concrete Members (철근콘크리트 부재의 손상모델)

  • 정영수;전준태
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.1
    • /
    • pp.87-94
    • /
    • 1991
  • Many different damage models have been prolxlsed for concrete in the past. Most of these are not well suited to predict the residual strength of damaged RC members. This paper reviews some basic facts alxlut concrete damage and uses these to systematically model damage as a low-cycle fatigue phenomenon. Instead of the number of load cycles to failure the energy dissipation capacity of a member is taken as the main variable, which depends on many different factors. The model is capable of simulating reasonably well the strength and stiffness degradation of I{C members subjected to strong cyclic loads.

Anisotropic damage modelling of biaxial behaviour and rupture of concrete structures

  • Ragueneau, F.;Desmorat, R.;Gatuingt, F.
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.417-434
    • /
    • 2008
  • This paper deals with damage induced anisotropy modeling for concrete-like materials. A thermodynamics based constitutive relationship is presented coupling anisotropic damage and elasticity, the main idea of the model being that damage anisotropy is responsible for the dissymmetry tension/compression. A strain written damage criterion is considered (Mazars criterion extended to anisotropy in the initial model). The biaxial behavior of a family of anisotropic damage model is analyzed through the effects of yield surface modifications by the introduction of new equivalent strains.