• 제목/요약/키워드: concrete cracking

검색결과 1,431건 처리시간 0.022초

Durability Assessment of High Strength Concrete with High Volume Mineral Admixture (다량의 광물질 혼화재를 사용한 고강도 콘크리트의 내구성 평가)

  • Baek, Chul-Woo;Kim, Hoon-Sang;Choi, Sung-Woo;Jo, Hyun-Tae;Ryu, Deug-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • 제27권6호
    • /
    • pp.641-649
    • /
    • 2015
  • The purpose of this study was to assess the durability of high-strength concrete with high volume mineral admixture (HVMAC) derived from previous studies within ternary blended concrete (TBC) and normal concrete (NC). Four durability evaluation types such as chloride penetration resistance, freezing and thawing resistance, carbonation resistance in two pre-treatment conditions, and sulfuric acid and sulfate resistance using 5% sulfuric acid ($H_2SO_4$), 10% sodium sulfate ($Na_2SO_4$), and 10% magnesium sulfate ($MgSO_4$) solution were selected and performed in this study. HVMAC showed the excellent chloride penetration resistance in any age and the freezing and thawing durability close to 100%. In addition, HVMAC affected more reduction in carbonation resistance than TBC. When the curing time was increased, to create a concrete internal organization densely improved resistance to carbonation. HVMAC also showed the most superior in sulfuric acid and sulfate resistance. As the reduction of calcium hydroxide and $C_3A$ to apply a large amount of admixture reduced the swelling and cracking of concrete, the strength reduction and mass change of concrete was found to be small indicated.

Influence of Transverse Reinforcement Elements for Flexural Strength of Lap Spliced Ultra-high-strength Reinforced Concrete Beams (겹침이음된 초고강도콘크리트 보의 휨강도에 횡방향보강 요소가 미치는 영향)

  • Bae, Baek-Il;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제26권5호
    • /
    • pp.135-142
    • /
    • 2022
  • In this study, lap spliced ultra-high strength reinforced concrete beams were tested and the code criteria for calculating the lap splice length which was affected by the transverse reinforcement and concrete covering performance were reviewed. The main variables for test were set as fiber volume fraction and transverse reinforcing bar arrangement to improve the confining performance of the concrete cover. The change of the confining performance of concrete cover according to the increase in the fiber mixing amount at 1% and 2% volume ratio was examined, and D10 stirrups with a spacing of 100 mm were placed in the lap spliced region. As a result of the test, the specimens confined by the stirrups showed a sudden drop of load bearing capacity with horizontal cracking at the position of tensile longitudinal reinforcement. However, horizontal cracks were not appeared at the location of longitudinal reinforcement for the specimens with steel fiber. And these specimens showed gradual decrease of load bearing capacity after experiencing peak load. In particular, it was found that the strain at the position of the tensile longitudinal reinforcements of the specimens to which the mixing ratio of 2% was applied exceeds the yield strain. As a result of measuring the strain on the concrete surface, it was found that the fiber was more effective in preventing damage to the concrete surface than the stirrups for short lap spliced region.

Evaluation of Freeze-Thaw Damage on Concrete Using Nonlinear Ultrasound (초음파의 비선형 특성을 이용한 콘크리트 동결융해 손상 평가)

  • Choi, Ha-Jin;Kim, Ryul-Ri;Lee, Jong-Suk;Min, Ji-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제25권4호
    • /
    • pp.56-64
    • /
    • 2021
  • Leakage due to deterioration and damage is one of the major causes of volume change by freezing and thawing, and it leads micro-cracking and surface scaling in concrete structures. The deterioration of damaged concrete accelerates with the chloride attack. Thus, in the detailed guidelines for facility performance evaluation (2020), the quality of cover concrete and the freeze-thaw (FT) repetition cycle were newly suggested for concrete durability assessment. The quality of cover concrete should be evaluated by the rebound hammer test and the FT repetition cycle should be also considered in the deterioration environmental assessment. This study suggested the application of fast dynamic based nonlinear ultrasound method to monitor initial micro-scale damage under freezing and thawing environment. Concrete specimens were fabricated with different water-cement ratios (40%, 60%) and air contents (1.5% and 3.0%). The compressive strength, rebound number, relative dynamic modulus, and nonlinear ultrasound were measured with different FT cycles. The scanning electron microscopy was also performed to investigate the micro-scale FT damage. As a result, both the rebound number and the relative dynamic modulus had difficulty to detect early damage but the proposed method showed a potential to detect initial micro-scale damage and predict the FT resistance performance of concrete.

Estimation of Bond Performance Improvement by Surface Treatment Equipments and Polymer Content by Boned Concrete Overlays (접착식 콘크리트 덧씌우기 경계면 처리 방식 및 폴리머 혼입률에 따른 부착성능 평가)

  • Jung, Won Kyong;Kim, Hyun Seok;Kwon, Oh Seon;Kim, Hyung Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제36권1호
    • /
    • pp.39-47
    • /
    • 2016
  • Repair methods of aging concrete pavement are generally used composite structure pavements, such a composite structure is subjected to a large impact on the mechanical behavior and ensure long-term commonality integrated under vehicle loads, environmental loads of the public in accordance with the bond strength between old and new concrete. A common of bonded concrete overlays that are currently available is Interface arrangements using a variety of equipment to ensure the excellent bond strength between old and new concrete than standard concrete, mixed with a material such as a polymer in order to improve the adhesion with the material itself. However, these method of constructions are being applied, depending on the developer site presents no special specifications apply when a specific application criteria objectively, this is due to the situation of each individual method, which is based on the difficulty in quality control of the site manager. In this study by performing a field test for polymer content via the variables that contribute most significantly to ensure bond strength and the field element core of the interface processing method and materials to ensure bond strength between the old and the new concrete, it was to derive the construction site construction method that can improve the performance of the bond strength through a review of the construction around the correlations and the bond strength according to the effective performance analysis of the conventional surface treatment process and variation of polymer volume fraction.

An Experimental Study on Flexural Behavior of Steel Fiber Reinforced Ultra High Performance Concrete Prestressed Girders (강섬유 보강 초고성능 콘크리트 프리스트레스트 거더의 휨거동 실험 연구)

  • Yang, In-Hwan;Joh, Chang-Bin;Kim, Byung-Suk
    • Journal of the Korea Concrete Institute
    • /
    • 제22권6호
    • /
    • pp.777-786
    • /
    • 2010
  • This paper examines the flexural behavior of full-scale prestressed concrete girders that were constructed of steel fiber reinforced ultra high performance concrete (UHPC). This study is designed to provide more information about the bending characteristics of UHPC girders in order to establish a reasonable prediction model for flexural resistance and deflection for future structural design codes. Short steel fibers have been introduced into prestressed concrete T-girders in order to study their effects under flexural loads. Round straight high strength steel fibers were used at volume fraction of 2%. The girders were cast using 150~190 MPa steel fiber reinforced UHPC and were designed to assess the ability of steel fiber reinforced UHPC to carry flexural loads in prestressed girders. The experimental results show that steel fiber reinforced UHPC enhances the cracking behavior and ductility of beams. Moreover, when ultimate failure did occur, the failure of girders composed of steel fiber reinforced UHPC was observed to be precipitated by the pullout of steel fibers that were bridging tension cracks in the concrete. Flexural failure of girders occurred when the UHPC at a particular cross section began to lose tensile capacity due to steel fiber pullout. In addition, it was determined that the level of prestressing force influenced the ultimate load capacity.

A Case Study for Deterioration due to Alkali-Silica Reaction in the Cement Concrete Pavement (알칼리-실리카 반응에 의한 시멘트 콘크리트 포장 파손 사례)

  • Hong, Seung-Ho;Han, Seung-Hwan;Yun, Kyong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • 제18권3호
    • /
    • pp.355-360
    • /
    • 2006
  • The Alkali-Silica Reaction(ASR) may cause a serious failure in the concrete pavements and structures. Several researches in some nations have conducted the continuous studies to prevent failure of the concrete structures by the ASR distress as well as the studies to manifest the mechanism. The researches on the ASR have not been performed affluently in Korea because the distress due to ASR has seldom been reported literarily. In this study, we tried to set up the systematic scheme practically for verifying the cause of distress due to ASR by using the visual inspections in field, the chemical method, petrographic analysis, and Electron Dispersive X-ray Spectrometer(EDX) method of Scanning Electron Microscopy(SEM) in laboratory. The chemical method, petrographic method using SEM, and X-ray method were used to verify the cause of pattern crack on the surface and internal crack in the plain concrete pavement. It can be concluded that the distress of a specific site in plain concrete pavement was mainly due to ASR. The chemical method, the petrographic method and EDX method using SEM may be the effective tools for verifying the cause of AAR distresses.

Analysis Study on Fire Performance with Internal Anchored Concrete Filled Steel Tube Columns According to Percent of Steel-Fibers (강섬유 콘크리트 혼입율에 따른 내부앵커형 콘크리트 충전기둥 내화성능에 관한 해석적 연구)

  • Kim, Sun Hee;Yom, Kong Soo;Kim, Yong Hwan;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • 제28권1호
    • /
    • pp.23-34
    • /
    • 2016
  • Concrete filled steel tube system has two major advantages. First, the confinement effect of steel tube improves the compressive strength of concrete. Second, the load capacity and deformation capacity of members are improved because concrete restrains local buckling of steel tube. It does, however, involve workability problem of using stud bolts or anchor bolts to provide composite effect for larger cross-sections. While the ribs inside the columns are desirable in terms of compressive behavior, they cause the deterioration in load capacity upon in-plane deformation resulting from thermal deformation. Since the ribs are directly connected with the concrete, the deformation of the ribs accelerates concrete cracking. Thus, it is required to improve the toughness of the concrete to resist the deformation of the ribs. Welding built-up tubular square columns can secure safety in terms of fire resistance if the problem are solved. This study focuses on mixing steel fiber in the concrete to improve the ductility and toughness of the columns. In order to evaluate fire resistance performance, loaded heating test was conducted with 8 specimens. The behavior and thermal deformation capacity of the specimens were analyzed for major variables including load ratio. The reliability of heat transfer and thermal stress analysis model was verified through the comparison of the results between the test and previous study.

Development of Shrinkage Reducing Agent for 3D Printing Concrete (3D 프린팅 콘크리트용 수축저감제 개발)

  • Lee, Dong-gyu;Yoo, Byung-Hyun;Son, Ho-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제20권12호
    • /
    • pp.37-43
    • /
    • 2019
  • Since 3D printed concrete can be constructed without formwork, it is easy to construct an atypical structure, and the construction time and labor cost can be reduced. However, since the construction is exposed to the outside, shrinkage cracking due to moisture loss inside and outside the concrete occurs. Therefore, in order to improve the durability of the 3D printed concrete, a shrinkage reduction plan of the 3D printed concrete is required. In this study, glycol-based and alcohol-based shrinkage reducing agents were fabricated and evaluated for their performance. The shrinkage reducing agent samples showing excellent performance were selected and applied to 3D printed concrete. As a result, the compressive strength was increased by more than 10% and the shrinkage was reduced by more than 36% when using a shrinkage reducing agent. It is expected that the production of high quality 3D printed concrete will be possible because it is possible to increase the compressive strength and reduce the amount of dry shrinkage by applying a shrinkage reducing agent for 3D printed concrete.

Concrete Deterioration Near Coastal Area and Characteristics of Associated Secondary Mineral Formation (해안지역 콘크리트의 성능저하 현상과 이에 수반되는 이차광물의 형성 특징)

  • 이효민;황진연;진치섭
    • Economic and Environmental Geology
    • /
    • 제36권5호
    • /
    • pp.365-374
    • /
    • 2003
  • Various deleterious chemicals can be introduced to existing concrete structures from various external sources. The deterioration of concrete by seawater attack is involved in complex processes due to various elements contained in seawater. In the present study, attention was paid to the formation of secondary minerals and characteristics of mineralogical and micro-structural changes involved in concrete deterioration caused by the influence of major seawater composition. The characteristics of deterioration occurred in existing concrete structures was carefully observed and samples were collected at many locations of coastal areas in Busan-Kyungnam. The petrographic, XRD, SEM/EDAX analyses were conducted to determine chemical, mineralogical and micro-structural changes in the aggregate and cement paste of samples. The experimental concrete deteriorations were performed using various chloride solutions (NaCl, CaCl, $MgCl_2$ and $Na_2SO_4$ solution. The experimental results were compared with the observation results in order to determine the effect of major elements in seawater on the deterioration. The alkalies in seawater appear to accelerate alkali-silica reaction (ASR). The gel formed by ASR is alkali-calcium-silica gel which known to cause severe expansion and cracking in concrete. Carbonation causes the formation of abundant less-cementitious calcite and weaken the cement paste. Progressive carbonation significantly affects on the composition and stability of some secondary minerals. Abundant gypsum generally occurs in concretes subjected to significant carbonation, but thaumasite ({$Ca_6/[Si(OH)_6]_2{\cdot}24H_2O$}${\cdot}[(SO_4)_2]{\cdot}[(CO_3))2]$) occurs as ettringite-thaumasite solid solution in concretes subjected to less significant carbonation. Experimentally, ettringite can be transformed to trichloroaluminate or decomposed by chloride ingress under controlled pH conditions. Mg ions in seawater cause cement paste deterioration by forming non-cementitious brucite and magnesium silicate hydrate (MSH).

Crack and Time Effect on Chloride Diffusion Coefficient in Nuclear Power Plant Concrete with 1 Year Curing Period (1년 양생된 고강도 원전 콘크리트의 염화물 확산에 대한 균열 및 시간효과)

  • Chun, Ju-Hyun;Ryu, Hwa-Sung;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제21권6호
    • /
    • pp.83-90
    • /
    • 2017
  • Concrete structure for nuclear power plant is mass concrete structure with large wall depth and easily permits cracking in early age due to hydration heat and drying shrinkage. It always needs cooling water so that usually located near to sea shore. The crack on concrete surface permits rapid chloride intrusion and also causes more rapid corrosion in the steel. In the study, the effect of age and crack width on chloride diffusion is evaluated for the concrete for nuclear power plant with 6000 psi strength. For the work, various crack widths with 0.0~1.4 mm are induced and accelerated diffusion test is performed for concrete with 56 days, 180days, and 365 days. With increasing crack width over 1.0mm, diffusion coefficient is enlarged to 2.7~3.1 times and significant reduction of diffusion is evaluated due to age effect. Furthermore, apparent diffusion coefficient and surface chloride content are evaluated for the concrete with various crack width exposed to atmospheric zone with salt spraying at the age of 180 days. The results are also analyzed with those from accelerated diffusion test.