• Title/Summary/Keyword: concrete cover failure

Search Result 116, Processing Time 0.021 seconds

Effects of Transverse Reinforcement on Headed Bars with Large Diameter at Cut-off Points (컷오프 구간에 정착된 대구경 확대머리철근에 대한 횡보강근의 효과)

  • Jung, Hyung-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.82-90
    • /
    • 2018
  • The nuclear structures are composed of large diameter bars over No.36. If the hooked bars are used for anchorage of large diameter bars, too long length of the tail extension of the hook plus bend create congestion and make an element difficult to construct. To address those problems, headed bars were developed. Provisions of ACI 318-08 specify the development length of headed bars and ignore the effect of transverse reinforcement based on the background researches. However, if headed bars are used at the cut-off or lap splice, longitudinal reinforcements, which are deformed in flexural members, induce tensile stress in cover concrete and increase the tensile force in the transverse reinforcement. The object of this research is to evaluate the effects of transverse reinforcement on the anchorage capacity of headed bar so anchorage test with variable of transverse rebar spacing was conducted. Specimens, which can consider the behavior at the cut-off, were tested. Test results show that failure of specimen without transverse reinforcement was sudden and brittle with concrete cover lifted and developed stress of headed bars was less than half of yield strength of headed bars. On the other hand, in the specimen with transverse reinforcement, transverse rebar directly resist the load of free-end so capacity of specimens highly increased.

Strengths of Lap Splices Anchored by SD600 Headed Bars (겹침이음 실험을 통한 SD600 확대머리철근의 정착강도 평가)

  • Chun, Sung-Chul;Lee, Jin-Gon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.217-224
    • /
    • 2013
  • Design provisions for the development length of headed bars in ACI 318-08 include concrete compressive strength and yield strength of headed bars as design parameters but do not consider the effects of transvers reinforcement. In addition, they have very strict limitation for clear spacing and material strengths because these provisions were developed based on limited tests. In this study, splice tests using SD600 headed bars with $2d_b$ clear spacing and transverse reinforcement were conducted. Test results show that unconfined specimens failed due to prying action and bottom cover concrete prematurely spalled. The contribution of head bearing on the anchorage strength is only 15% on average implying that unconfined specimens failed before the head bearing was not sufficiently developed. Confined specimens with stirrups placed along whole splice length have enhanced strengths in bearing as well as bond because the stirrups prevented prying action and improved bond capacity. Bond failure occurred in locally confined specimens where stirrups were placed only at the ends of splice length. The stirrups at ends of splice lengths can prevent prying action but the bond capacity did not increase. From regression analysis of test results, an equation to predict anchorage strength of headed bars was developed. The proposed equation consists of bond and bearing contributions and includes transverse reinforcement index. The average ratio of tests to predictions is 1.0 with coefficient of variation of 6%.

Service Life Evaluation through Probabilistic Method Considering Time-Dependent Chloride Behavior (염해 시간의존성을 고려한 확률론적 내구수명 평가)

  • Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.149-156
    • /
    • 2016
  • The service life in RC (Reinforced Concrete) is very important and it is usually obtained through deterministic method based on Fick's 2nd law and probabilistic method. This paper presents an evaluation of $P_{df}$(durability failure probability) and the related service life considering time-dependent behaviors in chloride diffusion and surface chloride content. For the work, field investigation is performed for RC structures exposed to chloride attack for 3.5~4.5years, focusing tidal zone (6.0 m) and sea shore (9.0 m), respectively. Random variables like cover depth, chloride diffusion coefficient, and surface chloride content are obtained, and $P_{df}$ and the service life are evaluated. Unlike the results from deterministic method using LIFE 365, probabilistic method with time effects on diffusion and surface chloride shows a relatively rapid change in the result, which is a significant reductions of service life in the case with low surface chloride content. For probabilistic evaluation of durability, high surface chloride content over $10.0kg/m^3$ is required and reasonable service life can be derived with consideration of time-dependent diffusion coefficient.

Quantitative Damage Index of RC Columns with Non-seismic Details (비내진상세를 가지는 철근콘크리트 기둥의 정량적 손상도 평가 기준)

  • Kim, Kyung-Min;Oh, Sang-Hoon;Choi, Kwang-Yong;Lee, Jung-Han;Park, Byung-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.11-20
    • /
    • 2013
  • In this paper, the quantitative damage index for reinforced concrete (RC) columns with non-seismic details were presented. They are necessary to carry out the postearthquake safety evaluation of RC buildings under 5 stories without seismic details. The static cyclic test of the RC frame sub-assemblage that was an one span and actual-sized was first conducted. The specimen collapsed by the shear failure after flexural yielding of a column, lots of cracks on the surfaces of columns and beam-column joints and the cover concrete splitting at the bottom of columns occurred. The damage levels of these kinds of columns with non-seismic details were classified to five based on the load-displacement relationship by the test result. The residual story drift ratios and crack widths were then adapted as the quantitative index to evaluate the damage limit states because those values were comparatively easy to measure right after earthquakes. The highest one among the residual story drift ratios under the similar maximum story drift ratio decided on the residual story drift ratio of each damage limit state. On the other hand, the lowest and average ones among the respective residual shear and flexural widths under the similar maximum story drift ratio decided on the residual shear and flexural widths of each damage limit state, respectively. These values for each damage limit state resulted in being smaller than those by the international damage evaluation guidelines that are for seismically designed members under the same deformations.

A Study of Minimum Reinforcement Ratio of Singly Reinforced Beamy (단철근 보의 최소철근비에 대한 고찰)

  • Choi, Seung-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.396-402
    • /
    • 2021
  • A cross section in RC flexural members must be designed to satisfy flexural strength and ductility requirements simultaneously. In design provisions, ductile behavior is ensured by a sufficient reinforcement ratio or depth of the neutral axis. If the reinforcement ratio is less than the balanced reinforcement ratio, ductile behavior is secured, and this value is theoretically the maximum reinforcement ratio. But for a cross section with less steel, brittle failure can occur regardless of ductile behavior because of unqualifying a cracking moment. Recently, designs with a minimum steel ratio have been increasing along with the use of high-strength material, so in design provisions, a minimum amount of reinforcement is suggested. In the KCI(2012) standard, a minimum amount of reinforcement was suggested in terms of strength of steel and concrete. But in the revised KCI(2017) standard, a minimum amount of reinforcement was suggested by a relationship between the design flexural strength and cracking moment indirectly. This code can reflect the effect of cover thickness, but a material model must be defined. Therefore, the minimum amount of reinforcement in KCI(2012) and KCI(2017) was examined, and a rational review method was studied by parametric analysis.

Numerical Analysis on Liquefaction Countermeasure of Seabed under Submerged Breakwater Using Concrete Mat Cover (for Irregular Waves) (콘크리트매트 피복을 이용한 잠제하 해저지반에서의 액상화 대책공법에 관한 수치해석 (불규칙파 조건))

  • Lee, Kwang-Ho;Ryu, Heung-Won;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.1
    • /
    • pp.20-35
    • /
    • 2017
  • In the case of the seabed around and under gravity structures such as submerged breakwater is exposed to a large wave action long period, the excess pore pressure will be significantly generated due to pore volume change associated with rearrangement soil grains. This effect will lead a seabed liquefaction around and under structures as a result of the decrease in the effective stress, and eventually the possibility of structure failure will be increased. The study of liquefaction potential for regular waves had already done, and this study considered for irregular waves with the same numerical analysis method used for regular waves. Under the condition of the irregular wave field, the time and spatial series of the deformation of submerged breakwater, the pore water pressure (oscillatory and residual components) and pore water pressure ratio in the seabed were estimated and their results were compared with those of the regular wave field to evaluate the liquefaction potential on the seabed quantitatively. Although present results are based on a limited number of numerical simulations, one of the study's most important findings is that a safer design can be obtained when analyzing case with a regular wave condition corresponding to a significant wave of the irregular wave.