• 제목/요약/키워드: concrete constitutive models

검색결과 147건 처리시간 0.02초

Evaluation of constitutive relations for concrete modeling based on an incremental theory of elastic strain-hardening plasticity

  • Kral, Petr;Hradil, Petr;Kala, Jiri
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.227-237
    • /
    • 2018
  • Today, the modeling of concrete as a material within finite element simulations is predominantly done through nonlinear material models of concrete. In current sophisticated computational systems, there are a number of complex concrete material models which are based on theory of plasticity, damage mechanics, linear or nonlinear fracture mechanics or combinations of those theories. These models often include very complex constitutive relations which are suitable for the modeling of practically any continuum mechanics tasks. However, the usability of these models is very often limited by their parameters, whose values must be defined for the proper realization of appropriate constitutive relations. Determination of the material parameter values is very complicated in most material models. This is mainly due to the non-physical nature of most parameters, and also the large number of them that are frequently involved. In such cases, the designer cannot make practical use of the models without having to employ the complex inverse parameter identification process. In continuum mechanics, however, there are also constitutive relations that require the definition of a relatively small number of parameters which are predominantly of a physical nature and which describe the behavior of concrete very well within a particular task. This paper presents an example of such constitutive relations which have the potential for implementation and application in finite element systems. Specifically, constitutive relations for modeling the plane stress state of concrete are presented and subsequently tested and evaluated in this paper. The relations are based on the incremental theory of elastic strain-hardening plasticity in which a non-associated flow rule is used. The calculation result for the case of concrete under uniaxial compression is compared with the experimental data for the purpose of the validation of the constitutive relations used.

Effect of Constitutive Material Models on Seismic Response of Two-Story Reinforced Concrete Frame

  • Alam, Md. Iftekharul;Kim, Doo-Kie
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권2호
    • /
    • pp.101-110
    • /
    • 2012
  • This paper focuses on the finite element (FE) response sensitivity and reliability analyses considering smooth constitutive material models. A reinforced concrete frame is modeled for FE sensitivity analysis followed by direct differentiation method under both static and dynamic load cases. Later, the reliability analysis is performed to predict the seismic behavior of the frame. Displacement sensitivity discontinuities are observed along the pseudo-time axis using non-smooth concrete and reinforcing steel model under quasi-static loading. However, the smooth materials show continuity in response sensitivity at elastic to plastic transition points. The normalized sensitivity results are also used to measure the relative importance of the material parameters on the structural responses. In FE reliability analysis, the influence of smoothness behavior of reinforcing steel is carefully noticed. More efficient and reasonable reliability estimation can be achieved by using smooth material model compare with bilinear material constitutive model.

철근콘크리트 기둥의 휨-곡률 모델링 및 변수고찰 (Modeling and Parametric Studies on Moment-Curvature Relations for Reinforced Concrete Columns)

  • 이차돈;최기봉;차준실
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.285-290
    • /
    • 2000
  • A mathematical model which can simulate biaxial moment-curvature relations for reinforced concrete column is developed. The developed model is capable of tracing the post-peak behavior of a column after peak load. The model can take into account different sectional shapes of a column and various constitutive models of confined concrete. The developed model is used to evaluate constitutive models of confined concrete under concentric loading, suggested by different researchers. Error function which measures the overall constitutive behavior of a confined concrete is intrcduced. The constitutive model minimizing this error function is selected and is incorporated into the developed model in order to investigate the effect of main parameters on the general column behavior.

  • PDF

Concrete stiffness matrices for membrane elements

  • Hsu, Thomas T.C.
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.599-608
    • /
    • 1997
  • The concrete stiffness matrices of membrane elements used in the finite element analysis of wall-type structures are reviewed and discussed. The behavior of cracked reinforced concrete membrane elements is first described by summarizing the constitutive laws of concrete and steel established for the two softened truss models (the rotating-angle softened-truss model and the fixed-angle softened-truss model). These constitutive laws are then related to the concrete stiffness matrices of the two existing cracking models (the rotating-crack model and the fixed-crack model). In view of the weakness in the existing models, a general model of the matrix is proposed. This general matrix includes two Poisson ratios which are not clearly understood at present. It is proposed that all five material properties in the general matrix should be established by new biaxial tests of panels using proportional loading and strain-control procedures.

Constitutive models of concrete structures subjected to seismic shear

  • Laskar, Arghadeep;Lu, Liang;Qin, Feng;Mo, Y.L.;Hsu, Thomas T.C.;Lu, Xilin;Fan, Feng
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.627-645
    • /
    • 2014
  • Using OpenSees as a framework, constitutive models of reinforced, prestressed and prestressed steel fiber concrete found by the panel tests have been implemented into a finite element program called Simulation of Concrete Structures (SCS) to predict the seismic behavior of shear-critical reinforced and prestressed concrete structures. The developed finite element program was validated by tests on prestressed steel fiber concrete beams under monotonic loading, post tensioned precast concrete column under reversed cyclic loading, framed shear walls under reversed cyclic loading or shaking table excitations, and a seven-story wall building under shake table excitations. The comparison of analytical results with test outcomes indicates good agreement.

Constitutive Modeling of Confined Concrete under Concentric Loading

  • Lee, Cha-Don;Park, Ki-Bong;Cha, Jun-Sil
    • KCI Concrete Journal
    • /
    • 제13권1호
    • /
    • pp.69-78
    • /
    • 2001
  • The inelastic behavior of a reinforced concrete columns is influenced by a number of factors : 1) level of axial load, 2) tie spacing, 3) volumetric ratio of lateral steel, 4) concrete strength, 5) distribution of longitudinal steel, 6) strength of lateral steel, 7) cover thickness, 8) configuration of lateral steel, 9) strain gradient, 10) strain rate, 11) the effectively confined concrete core area, and 12) amount of longitudinal steel. A new constitutive model of a confined concrete is suggested in order to investigate the nonlinear behavior of the reinforced concrete columns under concentric loading. The developed constitutive model for the confined concrete takes into account the effects of effectively confined area as well as the horizontal and longitudinal distributions of the confining pressures. None of the existing models incorporated these two main effects at the same time. A total of different six constitutive models for the behavior of the confined concrete under concentric compression were compared with the sixty-one test results reported by different researchers. The superiority of the developed model in its accuracy is demonstrated by evaluating the error function, which compares the weighted averages for the sum of squared relative differences in peak compressive strength and corresponding strain, stress at strain equal to 0.015, and total area under stress-strain curve up to strain equal to 0.015.

  • PDF

Novel nonlinear stiffness parameters and constitutive curves for concrete

  • Al-Rousan, Rajai Z.;Alhassan, Mohammed A.;Hejazi, Moheldeen A.
    • Computers and Concrete
    • /
    • 제22권6호
    • /
    • pp.539-550
    • /
    • 2018
  • Concrete is highly non-linear material which is originating from the transition zone in the form of micro-cracks, governs material response under various loadings. In this paper, the constitutive models published by many researchers have been used to generate novel stiffness parameters and constitutive curves for concrete. Following such linear material formulations, where the energy is conservative during the curvature, and a nonlinear contribution to the concrete has been made and investigated. In which, nonlinear concrete elastic modulus modeling has been developed that is capable-of representing concrete elasticity for grades ranging from 10 to 140 MPa. Thus, covering the grades range of concrete up to the ultra-high strength concrete, and replacing many concrete models that are valid for narrow ranges of concrete strength grades. This has been followed by the introduction of the nonlinear Hooke's law for the concrete material through the replacement of the Young constant modulus with the nonlinear modulus. In addition, the concept of concrete elasticity index (${\varphi}$) has been proposed and this factor has been introduced to account for the degradation of concrete stiffness in compression under increased loading as well as the multi-stages micro-cracking behavior of concrete under uniaxial compression. Finally, a sub-routine artificial neural network model has been developed to capture the concrete behavior that has been introduced to facilitate the prediction of concrete properties under increased loading.

재료의 구성모델에 따른 철근콘크리트 골조의 비선형 동적거동 특성 차이에 관한 연구 (Nonlinear Dynamic Analysis of RC Frames Based on Constitutive Models of Constituent Materials)

  • 허영애;강현구
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권4호
    • /
    • pp.1-8
    • /
    • 2013
  • 철근콘크리트 구성요소에 대한 비탄성 거동 모델 개발은 철근콘크리트 구조물에 대한 성능기반 내진평가의 정밀도 향상에 있어 매우 중요한 요소로 본 연구에서는 지진과 같은 불규칙 반복 하중에 대한 철근콘크리트 구조물의 비선형 동적응답을 예측함에 있어 콘크리트 구성모델의 특성에 따른 민감도를 고찰하고자 하였다. 해석결과에 따르면 구속된 코어 콘크리트 모델과 일반 콘크리트의 구성모델은 동적응답에 큰 영향을 끼치지 않았으나 철근의 경우에 층간변위와 관련하여 구성모델에 따른 동적거동은 매우 민감하게 응답하는 것으로 나타났으며, 몇 개 층에서의 층간변위는 그 차이가 철근 구성모델 선택에 따라 2배 이상 차이 나는 것으로 나타났다. 따라서 Non-ductile과 Ductile 골조 공히 비선형 동적해석을 수행하는데 있어 정밀한 철근 구성모델의 선택은 매우 중요한 것으로 사료된다.

The high-rate brittle microplane concrete model: Part I: bounding curves and quasi-static fit to material property data

  • Adley, Mark D.;Frank, Andreas O.;Danielson, Kent T.
    • Computers and Concrete
    • /
    • 제9권4호
    • /
    • pp.293-310
    • /
    • 2012
  • This paper discusses a new constitutive model called the high-rate brittle microplane (HRBM) model and also presents the details of a new software package called the Virtual Materials Laboratory (VML). The VML software package was developed to address the challenges of fitting complex material models such as the HRBM model to material property test data and to study the behavior of those models under a wide variety of stress- and strain-paths. VML employs Continuous Evolutionary Algorithms (CEA) in conjunction with gradient search methods to create automatic fitting algorithms to determine constitutive model parameters. The VML code is used to fit the new HRBM model to a well-characterized conventional strength concrete called WES5000. Finally, the ability of the new HRBM model to provide high-fidelity simulations of material property experiments is demonstrated by comparing HRBM simulations to laboratory material property data.

철근 좌굴을 고려한 콘크리트 패널의 비선형 거동에 대한 해석 (Analysis for Nonlinear Behavior of Concrete Panel Considering Steel Bar Buckling)

  • 이상섭;박금성;배규웅
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권6호
    • /
    • pp.130-137
    • /
    • 2018
  • 콘크리트의 구성모델은 많은 연구를 통해 부재의 비선형 거동을 합리적으로 예측할 수 있도록 여러 모델이 개발되어 왔고 철근의 구성모델은 철근과 콘크리트의 부착 효과에 따른 인장 강화 현상을 반영한 모델이 연구되고 있지만 완전탄소성이나 이선형 변형도 경화 모델이 일반적으로 사용되고 있다. 코어 벽체로 활용하기 위해 개발하고 있는 복합 PC 패널의 반복가력 실험을 통해 길이 방향 철근의 좌굴에 의해 비선형 거동이 발생하였음을 확인하였다. 이 연구에서는 이와 같은 비선형 거동을 해석적으로 모사하기 위해 철근의 매입과 좌굴의 영향을 고려할 수 있는 구성모델들을 조사하였고 이 구성모델들을 재구성하여 새로운 모델을 제시하였다. 또한 제시한 모델의 타당성을 검증하기 위해 해석결과를 콘크리트 벽체와 복합 PC 패널 실험결과와 비교하였다. 철근의 매입 효과만 고려된 모델을 사용한 해석결과는 항복 이후 하중의 감소 없이 변형이 증가하는 거동을 예측하고 있지만, 제안 모델은 항복 이후 하중의 감소를 표현할 수 있어 콘크리트 패널의 거동을 예상하는 재료 모델로 활용할 수 있을 것으로 확인되었다.