• Title/Summary/Keyword: concrete compressive strength

Search Result 4,854, Processing Time 0.027 seconds

Comparison Study on Nondestructive Strength Equation Based on Probability for Bridges (확률론적 방법을 적용한 도로교량의 비파괴 압축강도식 평가)

  • Kim, Hun-Kyom
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.39-46
    • /
    • 2018
  • PURPOSES: This study is to estimate nondestructive strength equation based on probability for bridges using field test data. METHODS : In this study, a series of the field inspection and the test have been performed on 297 existing bridges, in order to evaluate the bridges, based on the test results of the in-depth inspection, and the estimated strengths by means of the nondestructive strength equations are analyzed and compared with results of the core specimen strengths. RESULTS : According to results of analyses, In case of standard design compressive strength of concrete is 18MPa, 21MPa, similar reliability of RILEM equation were 0.89~0.90, but in case of standard design compressive strength of concrete is 35MPa, 40MPa were 0.4~0.56. According to standard design compressive strength of concrete is 40MPa, similar reliability of ultrasonic pulse velocity method equation were 0.56. CONCLUSIONS :RILEM equation had high similar reliability than other equation in case of standard design compressive strength of concrete is 18MPa, 21MPa, but had low similar reliability than other equation in case of standard design compressive strength of concrete is 35MPa, 40MPa. and ultrasonic pulse velocity method equation had low similar reliability than other equation in case of standard design compressive strength of concrete is 40MPa.

Enhancing mechanical and durability properties of geopolymer concrete with mineral admixture

  • Jindal, Bharat Bhushan;Singhal, Dhirendra;Sharma, Sanjay;Parveen, Parveen
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.345-353
    • /
    • 2018
  • This paper approaches to improve the mechanical and durability properties of low calcium fly ash geopolymer concrete with the addition of Alccofine as a mineral admixture. The mechanical and durability performance of GPC was assessed by means of compressive strength, flexural strength, permeability, water absorption and permeable voids tests. The correlation between compressive strength and flexural strength, depth of water penetration and percentage permeable voids are also reported. Test results show that addition of Alccofine significantly improves the mechanical as well as permeation properties of low calcium fly ash geopolymer concrete. Very good correlations were noted between the depth of water penetration and compressive strength, percentage permeable voids and compressive strength as well as between compressive strength and flexural strength.

Use of waste glass as coarse aggregate in concrete: mechanical properties

  • Yan, Lan-lan;Liang, Jiong-Feng
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • The possibility of using recycled coarse glass aggregates as a substitute for natural crushed stone are relatively limited. In order to promote it for engineering application, this paper reports the effect of coarse glass aggregate on mechanical behavior of concrete. The coarse aggregates are substituted for coarse glass aggregate (CGA) as 0%,20%,40%,60%,80% and 100%.The results show that increasing the coarse glass aggregate content cause decrease in compressive strength, the elastic modulus, the splitting tensile strength, the flexural strength. An equation is presented to generate the relationship between cube compressive strength and prism compressive strength, the relationship between cube compressive strength and elastic modulus, the relationship between cube compressive strength and splitting tensile strength, the relationship between cube compressive strength and flexural strength of coarse glass concrete.

A Study of Influencing Factors on Compressive Strength of Concrete Frozen at Early Ages (초기동해를 입은 콘크리트의 압축강도에 미치는 영향인자에 관한 연구)

  • 배수원;김진근;권기주;정원섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.527-532
    • /
    • 2003
  • When fresh concrete is exposed to sufficiently low temperature, the free water in the concrete is cooled below its freezing point and transforms into ice, which causes decrease in compressive strength of concrete. Of the many influencing factors on the loss of compressive strength, the age of concrete at the beginning of freezing, water-cement ratio, and cement-type are significantly important. The objective of this study is to examine how the these factors affect the compressive strength of concrete frozen at early ages. The results from the tests showed that as age at the beginning of freezing is delayed and water-cement ratio is low, the loss of compressive strength decreases. In addition, concrete made with high-early-strength cement is less susceptible to frost damage than concrete made with ordinary portland cement.

  • PDF

The Estimation of Compressive Strength of Ready-Mixed Concrete In the North Territory of Gyeonggi on the base of Mix Design (배합표에 의한 경기북부 레미콘의 압축강도 추정에 관한 연구)

  • 임창훈;지남용;조홍범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.979-984
    • /
    • 2003
  • Quality control of ready-mixed concrete is most important in the production step because, the performance of hardened concrete is revealed due to ready-mixed concrete. Hardened concrete has several properties physically. Above all things compressive strength of concrete has a greate effect in the design of structures, analysis, and durability. Compressive strength is simple predicted by w/c up to date, but there are some limits because different compressive strengths can be revealed in the same w/c. Therefore this study contributes to the quality control of ready-mixed concrete through statistical analysis for the relation between mix factors in mix design and compressive strength, predictable equation for compressive strength.

  • PDF

Effect of a Heated Curing on Concrete Compressive Strength for Tunnel Form Construction (터널 폼 공법에서 강제양생이 콘크리트강도에 미치는 영향)

  • 이충우;이광수;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.232-236
    • /
    • 1993
  • The Tunnel Form(T/F) system instead of traditional euro form has been tried to reduce construction duration and to improve concrete quality in reinforced concrete wall type apartment construction. To find the relationship for concrete compressive strength between cylinder mold and slab, the different curing locations of concrete cylinder mold in the room have been investigated. The test results showed that the compressive strength of the cylinder concrete with middle-upper location in the room was most near concrete compression strength with respect to slab concrete strength.

  • PDF

A predictive model for compressive strength of waste LCD glass concrete by nonlinear-multivariate regression

  • Wang, C.C.;Chen, T.T.;Wang, H.Y.;Huang, Chi
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.531-545
    • /
    • 2014
  • The purpose of this paper is to develop a prediction model for the compressive strength of waste LCD glass applied in concrete by analyzing a series of laboratory test results, which were obtained in our previous study. The hyperbolic function was used to perform the nonlinear-multivariate regression analysis of the compressive strength prediction model with the following parameters: water-binder ratio w/b, curing age t, and waste glass content G. According to the relative regression analysis, the compressive strength prediction model is developed. The calculated results are in accord with the laboratory measured data, which are the concrete compressive strengths of different mix proportions. In addition, a coefficient of determination $R^2$ value between 0.93 and 0.96 and a mean absolute percentage error MAPE between 5.4% and 8.4% were obtained by regression analysis using the predicted compressive analysis value, and the test results are also excellent. Therefore, the predicted results for compressive strength are highly accurate for waste LCD glass applied in concrete. Additionally, this predicted model exhibits a good predictive capacity when employed to calculate the compressive strength of washed glass sand concrete.

Prediction of Compressive Strength of Fly Ash Concrete by a New Apparent Activation Energy Function (새로운 겉보기 활성에너지 함수에 의한 플라이애시 콘크리트의 압축강도 예측)

  • 한상훈;김진근;박연동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.947-952
    • /
    • 2001
  • The prediction model is proposed to estimate the variation of compressive strength of fly ash concrete with aging. After analyzing the experimental result with the model, the regression results are presented according to fly ash replacement content and water/cement ratio. Based on the regression results, the influence of fly ash replacement content and water/cement ratio on apparent activation energy was investigated. According to the analysis, the model provides a good estimate of compressive strength development of fly ash concrete with aging. As the fly ash replacement content increases, the limiting relative compressive strength and initial apparent activation energy become greater. The concrete with water/cement ratio smaller than 0.40 shows that the limiting relative compressive strength and apparent activation energy are nearly constant according to water/cement ratio. But, the concrete with water/cement ratio greater than 0.40 has the increasing limiting relative compressive strength and apparent activation energy with increasing water/cement ratio.

  • PDF

A Study on Size Effect for Compressive Strength of Concrete considering Strength Level (강도수준에 따른 콘크리트 압축강도의 크기효과에 관한 연구)

  • 김희성;진치섭;어석홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.239-244
    • /
    • 1999
  • The reduction phenomena of the compressive strength of concrete with respect to the size of specimens have been extensively investigated. However, adequate analysis technique have not been developed until now. Existing researches have shown that the larger member size, the smaller the strength. This indicated the necessity of nonlinear fracture mechanics theory in order to analyze the fracture behaviors of concrete. The are some models that predict the size effect of compressive strength of cylindrical specimens. Theses equations, however, are developed not considering the difference of fracturing mechanism which depends on both geometry of specimen and the strength level of concrete. In this paper, a model to predict compressive strength of cylindrical concrete specimens with respect to diameters, h/d ratios, and the strength level of concrete, is suggested. For this purpose, theoretical and statistical analyses are conducted. Experimental constants used in the model of new size effect are formulated in terms of strength levels of concrete based on existing experimental data.

  • PDF

AN EXPERIMENTAL INVESTIGATION ON MINIMUM COMPRESSIVE STRENGTH OF EARLY AGE CONCRETE TO PREVENT FROST DAMAGE FOR NUCLEAR POWER PLANT STRUCTURES IN COLD CLIMATES

  • Koh, Kyung-Taek;Park, Chun-Jin;Ryu, Gum-Sung;Park, Jung-Jun;Kim, Do-Gyeum;Lee, Jang-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.393-400
    • /
    • 2013
  • Concrete undergoing early frost damage in cold weather will experience significant loss of not only strength, but also of permeability and durability. Accordingly, concrete codes like ACI-306R prescribe a minimum compressive strength and duration of curing to prevent frost damage at an early age and secure the quality of concrete. Such minimum compressive strength and duration of curing are mostly defined based on the strength development of concrete. However, concrete subjected to frost damage at early age may not show a consistent relationship between its strength and durability. Especially, since durability of concrete is of utmost importance in nuclear power plant structures, this relationship should be imperatively clarified. Therefore, this study verifies the feasibility of the minimum compressive strength specified in the codes like ACI-306R by evaluating the strength development and the durability preventing the frost damage of early age concrete for nuclear power plant. The results indicate that the value of 5 MPa specified by the concrete standards like ACI-306R as the minimum compressive strength to prevent the early frost damage is reasonable in terms of the strength development, but seems to be inappropriate in the viewpoint of the resistance to chloride ion penetration and freeze-thaw. Consequently, it is recommended to propose a minimum compressive strength preventing early frost damage in terms of not only the strength development, but also in terms of the durability to secure the quality of concrete for nuclear power plants in cold climates.