• Title/Summary/Keyword: concrete composite

Search Result 2,723, Processing Time 0.028 seconds

Mapped relationships between pier settlement and rail deformation of bridges with CRTS III SBT

  • Jiang, Lizhong;Liu, Lili;Zhou, Wangbao;Liu, Xiang;Liu, Chao;Xiang, Ping
    • Steel and Composite Structures
    • /
    • v.36 no.4
    • /
    • pp.481-492
    • /
    • 2020
  • To study the rail mapped deformation caused by the pier settlement of simply - supported bridges with China Railway Track System III (CRTS III) slab ballastless track (SBT) system under the mode of non-longitudinal connection ballastless track slab, this study derived an analytical solution to the mapped relationships between pier settlement and rail deformation based on the interlayer interaction mechanism of rail-pier and principle of stationary potential energy. The analytical calculation results were compared with the numerical results obtained by ANSYS finite element calculation, thus verifying the accuracy of analytical method. A parameter analysis was conducted on the key factors in rail mapped deformation such as pier settlement, fastener stiffness, and self-compacting concrete (SCC) stiffness of filling layer. The results indicate that rail deformation is approximately proportional to pier settlement. The smaller the fastener stiffness, the smoother the rail deformation curve and the longer the rail deformation area is. With the increase in the stiffness of SCC filling layer, the maximum positive deformation of rail gradually decreases, and the maximum negative deformation gradually increases. The deformation of rail caused by the pier settlement of common-span bridge structures will generate low-frequency excitation on high-speed trains.

Punching Shear Strength and Behavior of CFT Column to RC Flat Plate connections (CFT기둥-RC 무량판 접합부의 펀칭전단강도 및 거동)

  • Lee, Cheol Ho;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.491-502
    • /
    • 2006
  • This paper summarizes full-scale test results on CFT column-to- flat plate connections has gained wide acceptance subjected to gravity loading. CFT construction has gained wide acceptance in a relatively short time in domestic building construction practice due to its various structural and construction advantages. However, efficient details for CFT column to flat plate connections have not been proposed yet. Based on the strategies that maximize economical field construction, several connecting schemes were proposed and tested. Test results showed strength and connection stiffness exceeding those of R/C flat p late counterparts. A semi-analytical procedure is presented to model the behavior of CFT column-to-flat plate connections. The five parameters to model elastic to post-punching catenary action range are calibrated based on the limited test data of t to progressive collapse prevention design is also illustrated.

Vibration analysis and FE model updating of lightweight steel floors in full-scale prefabricated building

  • Petrovic-Kotur, Smiljana P.;Pavic, Aleksandar P.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.277-300
    • /
    • 2016
  • Cold-formed steel (CFS) sections are becoming an increasingly popular solution for constructing floors in residential, healthcare and education buildings. Their reduced weight, however, makes them prone to excessive vibrations, increasing the need for accurate prediction of CFS floor modal properties. By combining experimental modal analysis of a full-scale CFS framed building and its floors and their numerical finite element (FE) modelling this paper demonstrates that the existing methods (based on the best engineering judgement) for predicting CFS floor modal properties are unreliable. They can yield over 40% difference between the predicted and measured natural frequencies for important modes of vibration. This is because the methods were adopted from other floor types (e.g., timber or standard steel-concrete composite floors) and do not take into account specific features of CFS floors. Using the adjusted and then updated FE model, featuring semi-rigid connections led to markedly improved results. The first four measured and calculated CFS floor natural frequencies matched exactly and all relevant modal assurance criterion (MAC) values were above 90%. The introduction of flexible supports and more realistic modelling of the floor boundary conditions, as well as non-structural $fa{\c{c}}ade$ walls, proved to be crucial in the development of the new more successful modelling strategy. The process used to develop 10 identified and experimentally verified FE modelling parameters is based on published information and parameter adjustment resulting from FE model updating. This can be utilised for future design of similar lightweight steel floors in prefabricated buildings when checking their vibration serviceability, likely to be their governing design criterion.

Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake

  • Zandi, Yousef;Shariati, Mahdi;Marto, Aminaton;Wei, Xing;Karaca, Zeki;Dao, Duy Kien;Toghroli, Ali;Hashemi, Mir Heydar;Sedghi, Yadollah;Wakil, Karzan;Khorami, Majid
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.439-447
    • /
    • 2018
  • The structural behaviors of cylindrical barns as a specific engineering structure have been considered as a complicated computing process. The structure design against the earthquake load, to protect by using the code, is an urgency avoiding unexpected damages. The situation has been subjected to the applied design method if there would be no failure across the construction procedures. The purpose of the current study is to clarify the behaviors of cylindrical reinforced concrete barns through the analytic methods across the mass and Lagrangian approaches through the whole outcomes comparison indicating that the isoparametric element obtained from the Lagrangian approach has been successfully applied in the barns earthquake analysis when the slosh effects have been discarded. The form of stress distributions is equal with $s_z$ closed distributions to one another.

Integration of in-situ load experiments and numerical modeling in a long-term bridge monitoring system on a newly-constructed widened section of freeway in Taiwan

  • Chiu, Yi-Tsung;Lin, Tzu-Kang;Hung, Hsiao-Hui;Sung, Yu-Chi;Chang, Kuo-Chun
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.1015-1039
    • /
    • 2014
  • The widening project on Freeway No.1 in Taiwan has a total length of roughly 14 kilometers, and includes three special bridges, namely a 216 m long-span bridge crossing the original freeway, an F-bent double decked bridge in a co-constructed section, and a steel and prestressed concrete composite bridge. This study employed in-situ monitoring in conjunction with numerical modeling to establish a real-time monitoring system for the three bridges. In order to determine the initial static and dynamic behavior of the real bridges, forced vibration experiments, in-situ static load experiments, and dynamic load experiments were first carried out on the newly-constructed bridges before they went into use. Structural models of the bridges were then established using the finite element method, and in-situ vehicle load weight, arrangement, and speed were taken into consideration when performing comparisons employing data obtained from experimental measurements. The results showed consistency between the analytical simulations and experimental data. After determining a bridge's initial state, the proposed in-situ monitoring system, which is employed in conjunction with the established finite element model, can be utilized to assess the safety of a bridge's members, providing useful reference information to bridge management agencies.

Seismic performance of a fiber-reinforced plastic cable-stayed bridge

  • Hodhod, Osama A.;Khalifa, Magdi A.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.399-414
    • /
    • 1997
  • This paper presents an investigation into the seismic response characteristics of a proposed ligh-weight pedestrian cable-stayed bridge made entirely from Glass Fiber Reinforced Plastics(GFRP). The study employs three dimensional finite element models to study and compare the dynamic characteristics and the seismic response of the GFRP bridge to a conventional Steel-Concrete (SC) cable-stayed bridge alternative. The two bridges were subjected to three synthetic earthquakes that differ in the frequency content characteristics. The performance of the GFRP bridge was compared to that of the SC bridge by normalizing the live load and the seismic internal forces with respect to the dead load internal forces. The normalized seismically induced internal forces were compared to the normalized live load internal forces for each design alternative. The study shows that the design alternatives have different dynamic characteristics. The light GFRP alternative has more flexible deck motion in the lateral direction than the heavier SC alternative. While the SC alternative has more vertical deck modes than the GFRP alternative, it has less lateral deck modes than the GFRP alternative in the studied frequency range. The GFRP towers are more flexible in the lateral direction than the SC towers. The GFRP bridge tower attracted less normalized base shear force than the SC bridge towers. However, earthquakes, with peak acceleration of only 0.1 g, and with a variety of frequency content could induce high enough seismic internal forces at the tower bases of the GFRP cable-stayed bridge to govern the structural design of such bridge. Careful seismic analysis, design, and detailing of the tower connections are required to achieve satisfactory seismic performance of GFRP long span bridges.

Damage assessment of shear connectors with vibration measurements and power spectral density transmissibility

  • Li, Jun;Hao, Hong;Xia, Yong;Zhu, Hong-Ping
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.257-289
    • /
    • 2015
  • Shear connectors are generally used to link the slab and girders together in slab-on-girder bridge structures. Damage of shear connectors in such structures will result in shear slippage between the slab and girders, which significantly reduces the load-carrying capacity of the bridge. Because shear connectors are buried inside the structure, routine visual inspection is not able to detect conditions of shear connectors. A few methods have been proposed in the literature to detect the condition of shear connectors based on vibration measurements. This paper proposes a different dynamic condition assessment approach to identify the damage of shear connectors in slab-on-girder bridge structures based on power spectral density transmissibility (PSDT). PSDT formulates the relationship between the auto-spectral densities of two responses in the frequency domain. It can be used to identify shear connector conditions with or without reference data of the undamaged structure (or the baseline). Measured impact force and acceleration responses from hammer tests are analyzed to obtain the frequency response functions at sensor locations by experimental modal analysis. PSDT from the slab response to the girder response is derived with the obtained frequency response functions. PSDT vectors in the undamaged and damaged states can be compared to identify the damage of shear connectors. When the baseline is not available, as in most practical cases, PSDT vectors from the measured response at a reference sensor to those of the slab and girder in the damaged state can be used to detect the damage of shear connectors. Numerical and experimental studies on a concrete slab supported by two steel girders are conducted to investigate the accuracy and efficiency of the proposed approach. Identification results demonstrate that damages of shear connectors are identified accurately and efficiently with and without the baseline. The proposed method is also used to evaluate the conditions of shear connectors in a real composite bridge with in-field testing data.

A Study on failure mechanism and load-bearing capacity of single-shell tunnel lining (싱글쉘 터널 라이닝의 파괴 메카니즘 및 지보성능에 관한 연구)

  • Shin, Hyu-Soung;Kim, Dong-Gyou;Chang, Soo-Ho;Bae, Gyu-jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.273-287
    • /
    • 2006
  • This study investigates the failure mechanism and load-carrying capacity of a single-shell lining which has no disturbance in transfer of shear force, with respect to a conventional double-shell lining which has separation between layers of shotcrete lining and secondary concrete lining by water-proof membrane. In order to evaluate the capacity, a 2-D numerical investigation is preliminarily carried out and then real-scale loading tests with tunnel lining section specimens are performed on the condition given by the numerical investigation. In the test, a concentrated load is applied for considering a released ground load or rock wedge load. Through this study, it appears that the single-shell lining takes the load-bearing capacity 20% higher than in case of the double-shell lining. In addition, a possibility of a composite single-shell shotcrete layer composed by multiple bonded layers partly involving different contents of high-capacity additives is shown thereby leading to use of less amount of the high-capacity additives on the condition of taking a similar load-bearing capacity.

Displacement Ductility Evaluation of Earthquake Experienced RC Bridge Piers with 2.5 Aspect Ratio (지진을 경험한 형상비 2.5 RC 교각의 내진 변위 연성도 평가)

  • 정영수;박창규;이은희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.79-88
    • /
    • 2003
  • For the construction of PC bridge piers the implementation of 1992 seismic provisions, longitudinal steels were practically lap-spliced in the plastic hinge region. Experimental investigation was conducted ductility of evaluate the seismic earthquake-experienced reinforced concrete columns with 2,5 aspect ratio. Six test specimens were mode with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under a constant axial load, P=0.1f$\_$ck/A$\_$g/. Residual seismic performance of damaged columns was evaluated and compared to that of the corresponding original columns. Test results show that PC bridge piers with lap-spliced longitudinal steels appeared to fail at low ductility. This was due to the debonding of the lap splice, which resulted from insufficient development of the longitudinal steels. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region indicated significant improvement both in flexural strength and displacement ductility.

Effect of Cross Beams on Live Load Distribution in Rolled H-beam Bridges (압연형강(H형강) 거더교의 가로보가 활하중 횡분배에 미치는 영향)

  • Yoon, Dong Yong;Eun, Sung Woon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.535-542
    • /
    • 2006
  • In this study, the effects of cross beams on the lateral distribution of live loads in composite rolled H-beam girder bridges, were investigated through three-dimensional finite element analysis. The parameters considered in this study were the inertial moment ratio between the main girder and the cross beam, the presence of the cross beam, and the number of cross beams. The live load lateral distribution factors were investigated through finite element analysis and the customary grid method. The results show that there was no difference between the bridge models with and without a cross beam. The cross beam of the beam and frame types also showed almost the same live load lateral distribution factors. However, the finite element analysis showed that the concrete slab deck plays a major role in the lateral distribution of a live load, and consequently, the effect of the cross beam is not so insignificant that it can be neglected.