• Title/Summary/Keyword: concrete composite

Search Result 2,765, Processing Time 0.027 seconds

Behavior Characteristics of FRP-Concrete Composite Beam using FRC (FRC를 적용한 FRP-콘크리트 합성보의 거동특성)

  • Cho Jeong-Rae;Cho Keunhee;Kim Byung-Suk;Chin Won Jong;Kim Sung Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.742-745
    • /
    • 2004
  • The FRP-concrete composite deck system has advantages of corrosion free and easy construction. The system is, however, comprised of two brittle materials, so that it suffers from inherent disadvantage of lack of ductility. In this study, some conceptual design is presented for preventing the brittle failure of FRP-concrete composite deck at ultimate load level. 4-point bending tests are performed for FRP-concrete composite beams using FRC(Fiber Reinforced Concrete). The specimens use the box-shape FRP member in the lower portion. Four types of concrete with different compressive strengths and ductilities including normal mortar and 3 FRCs are placed in the upper portion. Typical failure mode in the test is identified; Concrete compressive failure occurs first at the maximum moment region, and the interfacial debonding between FRP and concrete member proceeds. Finally, the tensile rupture of FRP member occurs. The specimen using FRC with the high compressive ductility of concrete fails with less brittle manner than other specimens. The reason is that the ductility from the concrete in compression prevents the sudden loss of load-carrying capacity after compressive concrete failure.

  • PDF

Numerical analysis of the axially loaded concrete filled steel tube columns with debonding separation at the steel-concrete interface

  • Chen, Shiming;Zhang, Huifeng
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.277-293
    • /
    • 2012
  • The interaction between steel tube and concrete core is the key design considerations for concrete-filled steel tube columns. In a concrete-filled steel tube (CFST) column, the steel tube provides confinement to the concrete core which permits the composite action among the steel tube and the concrete. Due to construction faults and plastic shrinkage of concrete, the debonding separation at the steel-concrete interface weakens the confinement effect, and hence affects the behaviour and bearing capacity of the composite member. This study investigates the axial loading behavior of the concrete filled circular steel tube columns with debonding separation. A three-dimensional nonlinear finite element model of CFST composite columns with introduced debonding gap was developed. The results from the finite element analysis captured successfully the experimental behaviours. The calibrated finite element models were then utilized to assess the influence of concrete strength, steel yield stress and the steel-concrete ratio on the debonding behaviour. The findings indicate a likely significant drop in the load carrying capacity with the increase of the size of the debonding gap. A design formula is proposed to reduce the load carrying capacity with the presence of debonding separation.

Experimental compressive behavior of novel composite wall with different width-to-thickness ratios

  • Qin, Ying;Chen, Xin;Zhu, Xing-Yu;Xi, Wang;Chen, Yuan-Ze
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.187-196
    • /
    • 2020
  • Double skin composite wall system owns several structural merits in terms of high load-carrying capacity, large axial stiffness, and favorable ductility. A recently proposed form of truss connector was used to bond the steel plates to the concrete core to achieve good composite action. The structural behavior of rectangular high walls under compression and T-shaped high walls under eccentric compression has been investigated by the authors. Furthermore, the influences of the truss spacings, the wall width, and the faceplate thickness have been previously studied by the authors on short walls under uniform compression. This paper experimentally investigated the effect of width-to-thickness ratio on the compressive behavior of short walls. Compressive tests were conducted on three short specimens with different width-to-thickness ratios. Based on the test results, it is found that the composite wall shows high compressive resistance and good ductility. The walls fail by local buckling of steel plates and crushing of concrete core. It is also observed that width-to-thickness ratio has great influence on the compressive resistance, initial stiffness, and strain distribution across the section. Finally, the test results are compared with the predictions by modern codes.

Numerical analysis of stainless steel-concrete composite beam-to-column joints with bolted flush endplates

  • Song, Yuchen;Uy, Brian;Wang, Jia
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.143-162
    • /
    • 2019
  • A number of desirable characteristics concerning excellent durability, aesthetics, recyclability, high ductility and fire resistance have made stainless steel a preferred option in engineering practice. However, the relatively high initial cost has greatly restricted the application of stainless steel as a major structural material in general construction. This drawback can be partially overcome by introducing composite stainless steel-concrete structures, which provides a cost-efficient and sustainable solution for future stainless steel construction. This paper presents a preliminary numerical study on stainless steel-concrete composite beam-to-column joints with bolted flush endplates. In order to ensure a consistent corrosion resistance within the whole structural system, all structural steel components were designed with austenitic stainless steel, including beams, columns, endplates, bolts, reinforcing bars and shear connectors. A finite element model was developed using ABAQUS software for composite beam-to-column joints under monotonic and symmetric hogging moments, while validation was performed based on independent test results. A parametric study was subsequently conducted to investigate the effects of several critical factors on the behaviour of composite stainless steel joints. Finally, comparisons were made between the numerical results and the predictions by current design codes regarding the plastic moment capacity and the rotational stiffness of the joints. It was concluded that the present codes of practice generally overestimate the rotational stiffness and underestimate the plastic moment resistance of stainless steel-concrete composite joints.

Residual bearing capacity of steel-concrete composite beams under fatigue loading

  • Wang, Bing;Liu, Xiaoling;Zhuge, Ping
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.559-569
    • /
    • 2021
  • This study was conducted to investigate the residual bearing capacity of steel-concrete composite beams under high-cycle fatigue loading through experiments and theoretical analysis. Six test beams with stud connectors were designed and fabricated for static, complete fatigue, and partial fatigue tests. The failure modes and the degradation of several mechanical performance indicators of the composite beams under high-cycle fatigue loading were analyzed. A calculation method for the residual bearing capacity of the composite beams after certain quantities of cyclic loading cycles was established by introducing nonlinear fatigue damage models for concrete, steel beam, and shear connectors beginning with the material residual strength attenuation process. The results show that the failure mode of the composite beams under the given fatigue load appears to be primarily affected by the number of cycles. As the number of fatigue loadings increases, the failure mode transforms from mid-span concrete crushing to stud cutting. The bearing capacity of a 3.0-m span composite beam after two million fatigue cycles is degraded by 30.7% due to premature failure of the stud. The calculated values of the residual bearing capacity method of the composite beam established in this paper agree well with the test values, which indicates that the model is feasibly applicable.

A Study on Shear Characteristics for FRP Composite Girder Filled with Concrete (콘크리트 충진 FRP 거더의 전단특성에 관한 연구)

  • Kwak, Kae-Hwan;Jang, Hwa-Sup;Kim, Woo-Jong;Kim, Hoi-Ok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.90-94
    • /
    • 2008
  • This study suggested a section of a new module that will allow for applying a large section in order to solve the technical difficulties mentioned above and to secure low stiffness of FRP, developed a new FRP + concrete composite girder that is filled with the appropriate amount of concrete. To identify the structural behavior of this FRP + concrete composite girder, experiments were conducted to measure its shear strength according to the difference in the strength of confined concrete and variation of the shear span to depth. The results of the shear strength test confirmed the composite effect from confining concrete and the effect of increase in strength proportional to the strength of concrete.

  • PDF

Characteristics of FRP-Concrete Composite Decks under Negative Flexure (FRP-콘크리트 합성 바닥판의 부모멘트부 거동 특성)

  • Kim, Sung-Tae;Cho, Keun-Hee;Park, Sung-Yong;Cho, Jeong-Rae;Kim, Byung-Suk;Shin, Yung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.86-89
    • /
    • 2006
  • The flexural performance of FRP-concrete composite deck in the connection between decks is evaluated. FRP-concrete composite deck, an innovative system is composed of concrete in the top and FRP panel in the bottom. The experiments are carried out on specimens with different details, such as FRP module and reinforcement of FRP re-bars. As a result, we verify that the transverse connections between our FRP-concrete composite decks with presented details secure enough safety and serviceability.

  • PDF

A Basic Study of the Calculation Model for Shear Connectors of Composite Precast Concrete Beams (합성 PC 보를 위한 전단 보강 계산 모형 기초 연구)

  • Lim, Chaeyeon;Lee, Dong Hoon;Kim, Sun Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.19-20
    • /
    • 2013
  • Green Frame is a column-beam system constructed by composite precast column and beam connected by embedded steel of their. From when the precast concrete beam of Green Frame is installed, until the concrete of slab and connection joint is cured, the self load of beam shall be supported by the embedded steel of it. Therefore, the concrete of beam could be separated from the embedded steel if the shear connector of beam of Green Frame is designed by the code on Structural standard. So, this study suggest an equation for the shear connection of composite precast concrete beams of Green Frame. The result of this study will be used as the main equation of the calculation model for shear connectors of composite precast concrete beams.

  • PDF

A review on performance of composite structures combining UHPC and normal concrete

  • Thanh Vy Nguyen;TuanAnh Nguyen;An Hoang Le
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.149-161
    • /
    • 2024
  • In the world, the construction science and technology industry has developed strongly thanks to the application of Ultra-High Performance Concrete (UHPC) technology, with a strength greater than 150 Mpa and unprecedented durability. compared to previous materials. However, this technology can build special structures but has limited use in construction because it is not commercially feasible to replace regular concrete in most structural types due to material costs. high, lack of availability, limited design standards, complex manufacturing and maintenance techniques. This article examines the composition of UHPC materials and their performance in composite structures with conventional concrete, a promising choice for promoting the development of UHPC technology in construction. It is based on the combined use of UHPC as a covering layer around normal concrete or as an inner core to increase the strength of normal concrete, create a slender structure and reduce the cost and repair of construction works. Construction and transport infrastructure are degraded. Manufacturing costs are expected to be reduced with composite construction due to the advantages of combined materials.

Dynamic characteristics analysis of partial-interaction composite continuous beams

  • Fang, Genshen;Wang, Jingquan;Li, Shuai;Zhang, Shubin
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.195-216
    • /
    • 2016
  • The dynamic characteristics of continuous steel-concrete composite beams considering the effect of interlayer slip were investigated based on Euler Bernoulli's beam theory. A simplified calculation model was presented, in which the Mode Stiffness Matrix (MSM) was developed. The natural frequencies and modes of partial-interaction composite continuous beams can be calculated accurately and easily by the use of MSM. Proceeding from the present method, the natural frequencies of two-span steel-concrete composite continuous beams with different span-ratios (0.53, 0.73, 0.85, 1) and different shear connection stiffnesses on the interface are calculated. The influence pattern of interfacial stiffness on bending vibration frequency was found. With the decrease of shear connection stiffness on the interface, the flexural vibration frequencies decrease obviously. And the influence on low order modes is more obvious while the reduction degree of high order is more sizeable. The real natural frequencies of partial-interaction continuous beams commonly used could have a 20% to 40% reduction compared with the fully-interaction ones. Furthermore, the reduction-ratios of natural frequencies for different span-ratios two-span composite beams with uniform shear connection stiffnesses are totally the same. The span-ratio mainly impacts on the mode shape. Four kinds of shear connection stiffnesses of steel-concrete composite continuous beams are calculated and compared with the experimental data and the FEM results. The calculated results using the proposed method agree well with the experimental and FEM ones on the low order modes which mainly determine the vibration properties.