• 제목/요약/키워드: concrete capacity design

검색결과 1,070건 처리시간 0.031초

내진설계를 위한 전단성능곡선 모델의 평가 (Evaluation of Shear Capacity Curve Model for Seismic Design)

  • 고성현;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.186-189
    • /
    • 2006
  • Since the columns with flexure-shear failure have lower ductility than those with flexural failure, shear capacity curve models shall be applied as well as flexural capacity curve in order to determine ultimate displacement for seismic design or performance evaluation. In this paper, a proposed modified shear capacity curve model is compared with the other models such as the CALTRANS model, Aschheim et al.'s model, and Priestley et al.'s model. Four shear capacity curve models are applied to the 4 full scale and 7 small scale circular bridge column test results and the accuracy of each model is discussed. It may not be fully adequate to drive a final decision from the application to the limited number of test results, however the proposed model provides the better prediction of failure mode and ultimate displacement than the other models for the selected column test results.

  • PDF

부착파괴를 고려한 Headed Reinforcement의 파괴메카니즘 (Failure Mechanism of Headed Reinforcement including Bond Failure)

  • 박종욱;홍성걸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.234-237
    • /
    • 2003
  • Previous researches about headed reinforcement have not been concerned about bond failure which is quite important is some cases. In this paper, failure mechanism including bond failure was presented in order to define the contribution of bond stress at the time failure occurs. Examined with design codes and test results, it is proved to be rational to consider the contribution of bond stress in determining the ultimate pull-out capacity of headed reinforcement. Direct adaptation of design code for anchor bolt without modification for the contribution of bond stress will lead to underestimate the capacity of headed reinforcement.

  • PDF

재료 비선형을 고려한 PSC I형 거더교의 내하력평가 기법에 관한 고찰 (A Study on the Evaluation Methods of the Load-Carrying Capacity of PSC I Type Girder Considering Material Nonlinear)

  • 심종성;김규선;문도영;주민관
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.187-192
    • /
    • 2003
  • Nowadays, It has adapted both Ultimate Strength Design(USD) and Allowable Stress Design(ASD) Method evaluating load-carrying capacity of PSC I Type Girder Bridge. But it has confused because the each method has brought some different results. This study shows some results of loading test of the PSC I type Girder Bridge and analyzed the structural behavior by FEM analysis considering material nonlinear. Parametric study of effective prestress of post tendon is performed and compared to results of loading test.

  • PDF

타설 경계면을 고려한 슬라이딩 궤도 횡방향 지지 콘크리트 블록의 전단 내하력 평가 (Evaluation of Shear Load Carrying Capacity of Lateral Supporting Concrete Block for Sliding Slab Track Considering Construction Joint)

  • 이성철;장승엽;이경찬
    • 한국전산구조공학회논문집
    • /
    • 제30권1호
    • /
    • pp.55-61
    • /
    • 2017
  • 최근 콘크리트 궤도 슬래브 하면과 교량 바닥판 사이에 저마찰 슬라이드층을 형성하는 궤도 시스템인 슬라이딩 궤도와 관련된 연구가 활발히 진행되고 있다. 본 연구에서는 슬라이딩 궤도에서 열차 주행에 따른 횡방향 하중을 저항하기 위해 설치되는 횡방향 지지 콘크리트 블록의 전단 내하력에 대한 연구를 수행하였다. 횡방향 지지 콘크리트 블록의 전단 내하력 산정을 위해 타설경계면에서의 콘크리트 마찰 및 철근의 다월 거동을 고려한 산정 기법을 개발하다. 제안된 산정 기법은 기존의 실험에서 측정된 전단 내하력을 13~23% 정도 보수적으로 예측하는 것으로 나타났다. 이는 균열면 골재 맞물림 효과를 무시한 것에 따른 것으로, 현장에서의 타설경계면 상태가 불확실한 것을 고려할 때 횡방향 지지 콘크리트 블록에 대한 안전측 설계를 위해 제안된 산정 기법이 합리적인 것으로 판단된다. 제안된 전단 내하력 산정 기법을 토대로 횡방향 지지 콘크리트 블록에 대한 설계 방안을 마련하였다.

Seismic performance of CFS shear wall systems filled with polystyrene lightweight concrete: Experimental investigation and design methodology

  • Mohammad Rezaeian Pakizeh;Hossein Parastesh;Iman Hajirasouliha;Farhang Farahbod
    • Steel and Composite Structures
    • /
    • 제46권4호
    • /
    • pp.497-512
    • /
    • 2023
  • Using light weight concrete as infill material in conventional cold-formed steel (CFS) shear wall systems can considerably increase their load bearing capacity, ductility, integrity and fire resistance. The compressive strength of the filler concrete is a key factor affecting the structural behaviour of the composite wall systems, and therefore, achieving maximum compressive strength in lightweight concrete while maintaining its lightweight properties is of significant importance. In this study a new type of optimum polystyrene lightweight concrete (OPLC) with high compressive strength is developed for infill material in composite CFS shear wall systems. To study the seismic behaviour of the OPLC-filled CFS shear wall systems, two full scale wall specimens are tested under cyclic loading condition. The effects of OPLC on load-bearing capacity, failure mode, ductility, energy dissipation capacity, and stiffness degradation of the walls are investigated. It is shown that the use of OPLC as infill in CFS shear walls can considerably improve their seismic performance by: (i) preventing the premature buckling of the stud members, and (ii) changing the dominant failure mode from brittle to ductile thanks to the bond-slip behaviour between OPLC and CFS studs. It is also shown that the design equations proposed by EC8 and ACI 318-14 standards overestimate the shear force capacity of OPLC-filled CFS shear wall systems by up to 80%. This shows it is necessary to propose methods with higher efficiency to predict the capacity of these systems for practical applications.

정착부 콘크리트 앵커시스템의 설계방법 적합성 평가 (Assessment of Design Methods for the Anchorage Systems Fastening to Concrete)

  • 윤영수;박성균;이성규;김상윤;이상국
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.425-428
    • /
    • 1999
  • This paper presents the evaluation of behavior and the prediction of tensile capacity of anchors that fail concrete, as the design basis for anchorage. Tests of cast-in-place headed anchors, domestically manufactured and installed in uncracked, unreinforced concrete are performed to investigate the behavior of single anchors and multiple anchors with the consideration of various embedment lengths and edge distances.

  • PDF

대형 콘크리트 패널 구조의 수직접합부 내력에 관한 고찰 (Strength of Vertical Joints in Large Concrete Panel Structures)

  • 이용재;서수연;이원호;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.95-98
    • /
    • 1992
  • In large panel structures, the design of joints which interconnect panels, is important deciding the load-bearing capacity of structures. Being various factors in the design of joints, it is difficult to develop a the critical system for the structural analysis of large concrete panel structures. Therefore there is a tendency to depend on the experiment. The purpose of this paper is to investigate the strength and the mechanical behavior of vertical joints in large concrete panel structures.

  • PDF

비선형 정적해석을 이용한 철근 콘크리트 구조물 성능평가기법 (Performance Evaluation Methods of Reinforced Concrete Structures using Nonlinear Static Analysis)

  • 윤성환;박대효;이도형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.373-376
    • /
    • 2006
  • There are representative two performance evaluation methods for performance-based design(PBD) of reinforced concrete structures by the nonlinear static analysis, one method includes the capacity spectrum method(CSM) suggested in ATC-40(996) and the other is the displacement coefficient method(DCM) in FEMA-273(1997). The objective of this paper is to compare and verify two methods and suggest the displacement-based design for new performance evaluation of reinforced concrete structures.

  • PDF

Shear-Strengthening of Reinforced & Prestressed Concrete Beams Using FRP: Part I - Review of Previous Research

  • Ary, Moustapha Ibrahim;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권1호
    • /
    • pp.41-47
    • /
    • 2012
  • Fiber-Reinforced Polymers (FRP) are used to enhance the behavior of structural components in either shear or flexure. The research conducted in this paper was mainly focused on the shear-strengthening of reinforced and prestressed concrete beams using FRP. The main objective of the research was to identify the parameters affecting the shear capacity provided by FRP and evaluate the accuracy of analytical models. A review of prior experimental data showed that the available analytical models used to estimate the added shear capacity of FRP struggle to provide a unified design equation that can predict accurately the shear contribution of externally applied FRP. In this study, the ACI 440.2R-$08^1$ model and the model developed by Triantafillou and Antonopoulos$^2$ were compared with the prior experimental data. Both analytical models failed to provide a satisfactory prediction of the FRP shear capacity. This study provides insights into potential reasons for the unsatisfactory prediction.

탄소섬유쉬트의 보강길이에 따른 R/C보의 휨 거동 (Flexural Behavior of Reinforced Concrete Beams with Strengthening Length of Carbon Fiber Sheets)

  • 신성우;안종문;이광수;반병렬;염성기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제2권1호
    • /
    • pp.136-141
    • /
    • 1998
  • It is demanded to obtain the design data for bond length of the strengthening carbon fiber sheets. An objectives of this study is to provide preliminary data of rational strengthening design method which is adequate to current domestic status. The present experimental study was performed to evaluate flexural strengthening effects of steel reinforced concrete beams strengthened with carbon fiber sheets. Following conclusions can be extracted. It is revealed that the maximum load carrying capacity is increased up to 9% when the reinforced concrete beams were strengthened with 1-ply of carbon fiber sheet which is half-width of beam. The performance of reinforced concrete sections were improved due to the strengthening carbon fiber sheets on the tensile side of beams. It is believed that the strengthening length of carbon fiber sheets must be provided as (0.5l+3d) to secure the ductile capacity of above three for the flexural strengthening of reinforced concrete beams.

  • PDF