• Title/Summary/Keyword: concrete bridge girders

Search Result 228, Processing Time 0.028 seconds

Experimental Study on the Cracking Loads of LB-DECKs with Varied Cross-Section Details (단면 상세가 변화된 LB-DECK의 균열하중에 대한 실험적 연구)

  • Youn, Seok-Goo;Cho, Gyu-Dae
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.657-665
    • /
    • 2011
  • LB-DECK, a precast concrete panel type, is a permanent concrete deck form used as a formwork for cast-in-place concrete pouring at bridge construction site. LB-DECK consists of 60 mm thick concrete slab and 125 mm height Lattice-girders partly embedded in the concrete slab. These decks have been applied to the bridges, which girder spacings are short enough to resist longitudinal cracking caused by construction loads. This paper presents experimental research work conducted to evaluate the cracking load of LB-DECKs designed for long span bridge decks. Twenty four non-composite beams and four composite beams are fabricated considering three design variables of thickness of concrete slab, height of lattice-girder, and diameter of top-bar. Static loads controlled by displacements are applied to test beams to obtain cracking and ultimate loads. Vertical displacements at the center of beams, strains of top-bar, crack propagation in concrete slab, and final failure modes are carefully monitored. The obtained cracking loads are compared to the analytical results obtained by elastic analyses. Long-term analyses using age-adjusted effective modulus method (AEMM) are also conducted to investigate the effects of concrete shrinkage on the cracking loads. Based on the test results, the tensile strength and the design details of LB-DECKs are discussed to prevent longitudinal cracking of long span bridge decks.

The Cross Section Optimization of P.C Box-Girder Bridge Constructed by Free Cantilever Method (FCM 으로 가설되는 P.C 박스거더교의 횡단면 최적설계)

  • 방명석;김일곤;조현준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.56-60
    • /
    • 1991
  • Free Cantilever Method(FCM) is one of the most effective construction methods when precast prestressed concrete box girders are erected in the construction site. The special feature of FCM is that precast segments are erected in cantilever on the pier and connected in the middle of span to form the complete superstructure. Therefore each structural subsystem will be shown in each construction step and it should be analyzed for design whenever the segment is erected. In this study, the computer program was developed to optimally design the P.C box girder bridge considering tile construction sequence and verified by comparing the calculated results with the data of existing P.C box girder bridges. the sensitivity analysis was performed to show the efficiency of the developed program.

  • PDF

Finite strip method in probabilistic fatigue analysis of steel bridges

  • Li, W.C.;Cheung, M.S.
    • Steel and Composite Structures
    • /
    • v.2 no.6
    • /
    • pp.429-440
    • /
    • 2002
  • A finite strip method is developed for fatigue reliability analysis of steel highway bridges. Flat shell strips are employed to model concrete slab and steel girders, while a connection strip is formed using penalty function method to take into account eccentricity of girder top flange. At each sampling point with given slab thickness and modulus ratio, a finite strip analysis of the bridge under fatigue truck is performed to calculate stress ranges at fatigue-prone detail, and fatigue failure probability is evaluated following the AASHTO approach or the LEFM approach. After the failure probability is integrated over all sampling points, fatigue reliability of the bridge is determined.

Influence of prestressing on the behavior of uncracked concrete beams with a parabolic bonded tendon

  • Bonopera, Marco;Chang, Kuo-Chun;Lin, Tzu-Kang;Tullini, Nerio
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.1-17
    • /
    • 2021
  • The influence of prestress force on the fundamental frequency and static deflection shape of uncracked Prestressed Concrete (PC) beams with a parabolic bonded tendon was examined in this paper. Due to the conflicts among existing theories, the analytical solutions for properly considering the dynamic and static behavior of these members is not straightforward. A series of experiments were conducted for a total period of approximately 2.5 months on a PC beam made with high strength concrete, subsequently and closely to the 28 days of age of concrete. Specifically, the simply supported PC member was short term subjected to free transverse vibration and three-point bending tests during its early-age. Subsequently, the experimental data were compared with a model that describes the dynamic behavior of PC girders as a combination of two substructures interconnected, i.e., a compressed Euler-Bernoulli beam and a tensioned parabolic cable. It was established that the fundamental frequency of uncracked PC beams with a parabolic bonded tendon is sensitive to the variation of the initial elastic modulus of concrete in the early-age curing. Furthermore, the small variation in experimental frequency with time makes doubtful its use in inverse problem identifications. Conversely, the relationship between prestress force and static deflection shape is well described by the magnification factor formula of the "compression-softening" theory by assuming the variation of the chord elastic modulus of concrete with time.

Numerical Study on the Behavior of Ground and Structure in Geosynthetic-Reinforced Soil (GRS) Integral Bridges

  • Sim, Youngjong;Jin, Kyu-Nam;Hong, Eun-Soo;Kim, Hansung;Park, Jun Kyung
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.97-108
    • /
    • 2021
  • In bridge abutment structures, lateral squeeze due to lateral stress of embankment placement and thermal movement of the bridge structure leads to failure of approach slabs, girders, and bridge bearings. Recently, GRS (Geosynthetic-Reinforced Soil) integral bridge has been proposed as a new countermeasure. The GRS integral bridge is a combining structure of a GRS retaining wall and an integral abutment bridge. In this study, numerical analyses which considered construction sequences and earthquake loading conditions are performed to compare the behaviors of conventional PSC (Pre-Stressed Concrete) girder bridge, traditional GRS integral bridge structure and GRS integral bridge with bracket structures (newly developed LH-type GRS integral bridge). The analysis results show that the GRS integral bridge with bracket structures is most stable compared with the others in an aspect of stress concentration and deformation on foundation ground including differential settlements between abutment and backfill. Furthermore, the GRS integral bridge with/without bracket structures was found to show the best performance in terms of seismic stability.

Vibration of Steel Composite Railway Bridges under High Speed Train (고속열차하중 하의 강합성형 철도교의 진동)

  • Chang, Sung Pil;Kwark, Jong Won;Ha, Sang Gil;Kim, Sung Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.577-587
    • /
    • 1998
  • The influences of high speed train on the dynamic responses of steel composite railway bridges are investigated. The bridge system which has two I-girder and several cross beams is modeled with plate and frame elements. With assumption of concrete slabs are fully connected with steel girders, the offset between slabs and girders is modeled using constraint equation. The track system is modeled using beams on elastic foundation theory. And, the TGV train model is developed in 2-dimension considering bouncing and pitching motion. And braking action of vehicle is considered using speed dependent braking function. To investigate the behavior of bridges due to moving trains, parametric studies on the variation of natural frequency of bridge, speed parameter, vehicle modeling method, braking action of train, etc are performed.

  • PDF

Moment Control of Pier in Concrete Bridges Constructed by Free Cantilever Method (FCM 공법으로 시공되는 콘크리트 교량의 교각 모멘트 제어)

  • Yang, In-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.711-720
    • /
    • 2006
  • The structural behavior of concrete girder in bridges constructed by free cantilever method is time-dependent due to creep and shrinkage of concrete. The constraint effects of longitudinal movement of concrete girders can introduce unfavourable moment into piers. This study is aimed at proposing a method to reduce the moment of piers in bridge constructed by free cantilever method. The method are systematically composed of time-dependent structural analysis of bridges and loading of control force during construction of bridge. Numerical analyses are carried out depending on the parameters such as amount of control force and flexibility of pier. Time-dependent structural behavior shows that moment of pier increases according as pier height decreases. Also, moment of pier decreases when control method are applied. Numerical result of the study represents that time-dependent moment of piers can be controlled effectively by employing the proposed method.

After-fracture redundancy in simple span two-girder steel bridge

  • Park, Yong-Myung;Joe, Woom-Do-Ji;Hwang, Min-Oh;Yoon, Tae-Yang
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.651-670
    • /
    • 2007
  • An experimental study to evaluate a redundancy capacity in simple span two plate-girder bridges, which are generally classified as a non-redundant load path structure, has been performed under the condition that one of the two girders is seriously damaged. The bottom lateral bracing was selected as an experimental parameter and two 1/5-scale bridge specimens with and without bottom lateral bracing have been prepared. The loading tests were first performed on the intact specimens without cracked girder within elastic range. Thereafter, the ultimate loading tests were conducted on the damaged specimens with an induced crack at the center of a girder. The test results showed that the cross beams and concrete deck redistributed partly the applied load to the uncracked girder, but the lateral bracing system played a significant role of the load redistribution when a girder was damaged. The redundancy was evaluated based on the test results and an appropriate redundancy level was evaluated when the lateral bracing was provided in a seriously damaged simple span two-girder steel bridge.

Structural performance of fiber reinforced cementitious plinths in precast girder bridges

  • Gergess, Antoine N;Challita, Julie
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.313-323
    • /
    • 2022
  • Steel laminated elastomeric bearings are commonly used in bridge structures to control displacements and rotations and transfer forces from the superstructure to the substructure. Proper knowledge of design, fabrication and erection procedures is important to ensure stability and adequate structural performance during the lifetime of the bridge. Difference in elevations sometimes leads to large size gaps between the bearing and the girder which makes the grout thickness that is commonly used for leveling deviate beyond standards. This paper investigates the structural response of High Strength Fiber Reinforced Cementitious (HSFRC) thin plinths that are used to close gaps between bearing pads and precast girders. An experimental program was developed for this purpose where HSFRC plinths of different size were cast and tested under vertical loads that simulate bridge loading in service. The structural performance of the plinths was closely monitored during testing, mainly crack propagation, vertical reaction and displacement. Analytically, the HSFRC plinth was analyzed using the beam on elastic foundation theory as the supporting elastomeric bearing pads are highly compressible. Closed form solutions were derived for induced displacement and forces and comparisons were made between analytical and experimental results. Finally, recommendations were made to facilitate the practical use of HSFRC plinths in bridge construction based on its enhanced load carrying capacity in shear and flexure.

Reliability-Based Assessment of Structural Safety of Steel-Concrete Hybrid Cable-Stayed Bridge Erected by the FCM and FSM during Construction (FCM과 FSM공법에 의한 강-콘크리트 복합사장교의 신뢰성에 기초한 시공간 구조안전도평가)

  • Yoon, Jung Hyun;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.515-526
    • /
    • 2007
  • In this study, the models and methods for the safety assessment of Steel-Concrete Hybrid Cable-Stayed Bridge, which consists of steel composite girder and concrete girder erected by the FCM(Free Cantilever Method) and FSM(Full Staging Method) are proposed for the assurance of structural safety and the prevention against bridge collapse during construction. By the structural reliability approach that reasonably considers the uncertainties associated with the resistance and the load effect, the resistance and the load distribution characteristics of Steel-Concrete Hybrid Cable-Stayed Bridgeare defined and the strength limit state equations of permanent structures and temporary structures during construction are suggested. An AFOSM algorithm and MCS technique are used for the reliability analysis of cables, pylons, girders, steel-concrete conjunction part and temporary bents. Also, component reliability analyses are performed at the construction stages based on the structural system model. To demonstrate their rationality and practicality, the proposed models and approaches are applied to a real bridge. The sensitivity analyses of main parameters are performed in order to identify the critical factors that control the safety of similar bridges. As a result, it may be stated that the proposed models could be implemented as a rational and practical approach for the safety assessment of Steel-Concrete Hybrid Cable-stayed bridges erected by FCM and FSM during construction.