• Title/Summary/Keyword: concrete bridge design

검색결과 854건 처리시간 0.027초

LB-DECK를 이용한 철근콘크리트바닥판의 펀칭전단강도 (Punching Shear Strength of Reinforced Concrete Bridge Decks with LB-DECK)

  • 윤석구;이재홍;조선규;정재동;원용석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.390-393
    • /
    • 2006
  • LB-DECK is used for both of permanent formwork and structural component with cast-in place concrete of concrete bridge decks. Current Korean design code recommends that concrete bridge deck with precast concrete panels have to be designed only using conventional flexural design method and does not allow the empirical design method which is based on punching shear strength of bridge deck. This paper present experimental test results of punching shear strength of concrete bridge decks with LB-DECKs. Six full-scaled concrete bridge decks, which are designed with the empirical design method, are fabricated with variation of girder spacings. Test results are presented in the paper and compared with the code predictions of ACI 318, CEB-FIP MC90. Based on the test results, it is proposed that LB-DECK is suitable to apply the empirical design method for concrete bridge decks.

  • PDF

Comparison of Totally Prefabricated Bridge Substructure Designed According to Korea Highway Bridge Design (KHBD) and AASHTO-LRFD

  • Kim, Tae-Hoon
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권4호
    • /
    • pp.319-332
    • /
    • 2013
  • The purpose of this study was to investigate the design comparison of totally prefabricated bridge substructure system. Prefabricated bridge substructure systems are a relatively new and versatile alternative in substructure design that can offer numerous benefits. The system can reduce the work load at a construction site and can result in shorter construction periods. The prefabricated bridge substructures are designed by the methods of Korea Highway Bridge Code (KHBD) and load and resistance factor design (AASHTO-LRFD). For the design, the KHBD with DB-24 and DL-24 live loads is used. This study evaluates the design method of KHBD (2005) and AASHTO-LRFD (2007) for totally prefabricated bridge substructure systems. The computer program, reinforced concrete analysis in higher evaluation system technology was used for the analysis of reinforced concrete structures. A bonded tendon element is used based on the finite element method, and can represent the interaction between the tendon and concrete of a prestressed concrete member. A joint element is used in order to predict the inelastic behaviors of segmental joints. This study documents the design comparison of totally prefabricated bridge substructure and presents conclusions and design recommendations based on the analytical findings.

GFRP 근 보강 콘크리트 교량 바닥판의 설계지배인자 (Governing Design Factors of GFRP-Reinforced Concrete Bridge Deck)

  • 조정래;박영환;박성용;조근희;김성태
    • 한국안전학회지
    • /
    • 제30권6호
    • /
    • pp.70-77
    • /
    • 2015
  • In this study, the governing design factors of GFRP-reinforced concrete bridge deck are analyzed for typical bridges in Korea. The adopted bridge deck is a cast-in-situ concrete bridge deck for the prestressed concrete girder bridge with dimensions of 240 mm thickness and 2.75 m span length from center-to-center of supporting girders. The selected design variables are the diameters of GFRP rebar, spacings of GFRP rebars and concrete cover thicknesses, Considering the absence of the specification relating GFRP rebar in Korea, AASHTO specification is used to design the GFRP-reinforced concrete bridge deck. The GFRP-reinforced concrete bridge deck is proved to be governed by the criteria about serviceability, especially maximum crack width, while steel reinforced concrete bridge deck is governed by the criteria on ultimate limit state. In addition, GFRP rebars with diameter of 16 mm ~ 19 mm should be used for the main transverse direction of decks to assure appropriate rebar spacings.

콘크리트-강 복합 엑스트라도즈드교의 설계변수 분석 (Parameter Analysis for Design of Concrete-Steel Hybrid Extradosed Bridge)

  • 노병철;이용진;최규형
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권6호
    • /
    • pp.100-109
    • /
    • 2011
  • 최근 중앙경간 일부를 강박스 거더로 대체하여 자중을 감소시켜 중앙경간의 장경간화를 시도한 교량형식인 콘크리트-강 복합 엑스트라도즈드교는 기존 엑스트라도즈드 교량을 개선하기 위한 대안으로 제시되고 있다. 콘크리트-강 복합 엑스트라도즈드교는 자중 감소를 통해 중앙경간의 장경간화가 가능할 뿐 아니라 기존형식과 동일한 경우 주거더의 높이와 측경간을 감소시킬 수 있어 구조적 효율성이 매우 우수한 형식으로 평가되고 있다. 따라서 콘크리트-강 복합 엑스트라도즈드교에 대한 최적의 설계기법을 구축하는 것이 매우 중요하다. 이를 위하여 본 연구에서는 콘크리트-강 복합 엑스트라도즈드교에 대한 주요 설계변수(주탑 높이, 주거더 높이 및 강상판 거더 길이)를 도출하고, 이를 바탕으로 설계변수별 수치해석과 그 결과를 이용한 설계변수별 민감도 분석을 실시하여 설계변수가 교량의 설계에 미치는 영향을 정량적으로 반영할 수 있는 설계가중값을 도출하였다.

Mechanical performance and design optimization of rib-stiffened super-wide bridge deck with twin box girders in concrete

  • Wen, Xiong;Ye, Jianshu;Gai, Xuemei;Cai, C.S.
    • Structural Engineering and Mechanics
    • /
    • 제48권3호
    • /
    • pp.395-414
    • /
    • 2013
  • The present study fundamentally investigated the mechanical performance of the rib-stiffened super-wide bridge deck with twin box girders in concrete, which is a very popular application to efficiently widen the bridges with normal span. The shear lag effects of the specific cross-sections were firstly studied. The spatial stress distribution and local stiffness of the bridge deck with twin box girders were then investigated under several typical wheel load conditions. Meanwhile, a comparative study for the bridge deck with and without stiffening ribs was also carried out during the investigation; thereby, a design optimization for the stiffening ribs was further suggested. Finally, aiming at the preliminary design, an approximate methodology to manually calculate the bending moments of the rib-stiffened bridge deck was analytically proposed for engineers to quickly assess its performance. This rib-stiffened bridge deck with twin box girders can be widely applied for concrete (especially concrete cable-stayed) bridges with normal span, however, requiring a super-wide bridge width due to the traffic flow.

Effect of a Time Dependent Concrete Modulus of Elasticity on Prestress Losses in Bridge Girders

  • Singh, Brahama P.;Yazdani, Nur;Ramirez, Guillermo
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권3호
    • /
    • pp.183-191
    • /
    • 2013
  • Prestress losses assumed for bridge girder design and deflection analyses are dependent on the concrete modulus of elasticity (MOE). Most design specifications, such as the American Association of State Highways and Transportation Officials (AASHTO) bridge specifications, contain a constant value for the MOE based on the unit weight of concrete and the concrete compressive strength at 28 days. It has been shown in the past that that the concrete MOE varies with the age of concrete. The purpose of this study was to evaluate the effect of a time-dependent and variable MOE on the prestress losses assumed for bridge girder design. For this purpose, three different variable MOE models from the literature were investigated: Dischinger (Der Bauingenieur 47/48(20):563-572, 1939a; Der Bauingenieur 5/6(20):53-63, 1939b; Der Bauingenieur, 21/22(20):286-437, 1939c), American Concrete Institute (ACI) 209 (Tech. Rep. ACI 209R-92, 1992) and CEB-FIP (CEB-FIP Model Code, 2010). A typical bridge layout for the Dallas, Texas, USA, area was assumed herein. A prestressed concrete beam design and analysis program from the Texas Department of Transportation (TxDOT) was utilized to determine the prestress losses. The values of the time dependent MOE and also specific prestress losses from each model were compared. The MOE predictions based on the ACI and the CEB-FIP models were close to each other; in long-term, they approach the constant AASHTO value. Dischinger's model provides for higher MOE values. The elastic shortening and the long term losses from the variable MOE models are lower than that using a constant MOE up to deck casting time. In long term, the variable MOE-based losses approach that from the constant MOE predictions. The Dischinger model would result in more conservative girder design while the ACI and the CEB-FIP models would result in designs more consistent with the AASHTO approach.

Seismic Performance and Retrofit of Circular Bridge Piers with Spliced Longitudinal Steel

  • Chung, Young-Soo;Lee, Jae-Hyung
    • KCI Concrete Journal
    • /
    • 제14권3호
    • /
    • pp.130-137
    • /
    • 2002
  • It is known that lap splice in the longitudinal reinforcement of reinforced concrete(RC) bridge columns is not desirable for seismic performance, but it is sometimes unavoidable. Lap splices were practically located in the potential plastic hinge region of most bridge columns that were constructed before the adoption of the seismic design provision of Korea Bridge Design Specification on 1992. The objective of this research is to evaluate the seismic performance of reinforced concrete(RC) bridge piers with lap splicing of longitudinal reinforcement in the plastic hinge region, to develop the enhancement scheme of their seismic capacity by retrofitting with glassfiber sheets, and to develop appropriate limited ductility design concept in low or moderate seismicity region. Nine test specimens in the aspect ratio of 4 were made with three confinement ratios and three types of lap splice. Quasi-static test was conducted in a displacement-controlled way under three different axial load levels. A significant reduction of displacement ductility ratios was observed for test columns with lap splices of longitudinal steels.

  • PDF

철근콘크리트 바닥판의 실험체 형상에 관한 해석적 연구 (Numerical Research for the Specimen Shape of the RC Slab)

  • 박창규;윤상철;정영수;유영찬
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.34-37
    • /
    • 2006
  • Accoarding as a specimen for reinforced concrete bridge deck was designed by each researcher's opinions, its size and shape was variable. Therefore, it makes difficult to comparison with other experiments. In the result of researching papers for design method of reinforced concrete bridge deck specimens, there is hardly found. The target of this study is introduction of the design method of a reinforced concrete bridge deck specimen. The most important point for the specimen design is materialization of the curvature of the real bridge deck. The result of this study appears that the specimens thickness effects highly to fit for the real reinforced concrete bridge deck's curvature.

  • PDF

강박스 거더교 콘크리트 바닥판에 발생하는 크리프, 건조수축, 수화열에 관한 연구 (A Study on Creep, Drying Shrinkage, Hydration Heat Produced in Concrete Floor Plate of Steel Box Girdler Bridge)

  • 강성후;박선준;김민성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.457-462
    • /
    • 2003
  • It studies the non-structural crack factors that are produced in Steel Box Girder Bridge concrete floor plate using analytical method. It mainly studies humidity and design standard of concrete strength. It used MIDAS CIVIL Ver 5.4.0, a general structure analysis program that applies drying shrinkage rate of domestic road bridge design standard and standard value of creep coefficient, CEF-FIP standard equation and ACI standard equation from the aspect of creep, drying shrinkage and hydration heat to see the effect of the two factors on concrete crack and found the following result. The analytical results of this study showed that the initial stress, which was obtained by ACI standard, exceeds the allowable tensile stress between 5 to 18 days. This result means that even if a bridge is designed and constructed according to design standard, the bridge can have cracks due to various variables such as drying shrinkage, hydration heat and creep that produce stress in slab.

  • PDF

초고강도 콘크리트 Ductal을 이용한 선유도연결 보행전용교량의 설계와 시공 (Design and Construction of Sunyudo Pedestrian Bridge Using Ultra-High Performance Concrete, Ductal)

  • 변윤주;허석범;정의환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.607-614
    • /
    • 2001
  • This paper describes the design and construction of main Arch bridge using Ultra-high performance concrete, Ductal in the Sunyudo pedestrian bridge project. Ductal is a new family of cementing materials with remarkable properties. Its mechanical characteristics reach unique values, with compressive strength in industrial use of 180 to 230 MPa and bending tensile strength of 50 to 80 MPa. By the use of Ductal, main Arch bridge crossing the Han-river is designed to the span 120m-long with optimized $\pi$ shape section.

  • PDF