• Title/Summary/Keyword: concrete age

Search Result 1,310, Processing Time 0.03 seconds

Workability and Strength Properties of MMA-Modified Polyester Polymer Concrete (MMA 개질 폴리머 콘크리트의 작업성 및 역학적 성질)

  • 연규석;주명기;유근우;최종윤;김남길
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.769-774
    • /
    • 2002
  • In this study, methyl methacrylate (MMA)- modified polyester polymer concrete, in which the MMA was added to the unsaturated polyester resin, was developed for improving the early-age strength and the workability of the conventional polymer concrete, binder of which was the unsaturated polyester resin. Then the fundamental properties of the polymer concrete such as workability and strength were surveyed. The experimental results showed that the workability was remarkably improved as the MMA contents increased, and the filler-binder ratio was turned out to be important factor for the workability. Slump prediction equation was derived by the regression analysis based on MMA content and filler-binder ratio. Furthermore, early-age strength was greater when the MMA content were increased in the range of 20-40 % but the strength rather showed a tendency of decrease when the MMA content was 50 %.

  • PDF

Fracture Characteristics of Concrete at Early Ages (초기재령 콘크리트의 파괴특성)

  • Lee, Yun;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.215-220
    • /
    • 2001
  • The objective of this study is to examine the fracture characteristics of concrete at early ages such as critical stress intensity factor, critical crack-tip opening displacement, fracture energy based on the concepts of the effective-elastic crack model and the cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By varying strength and age, load-crack mouth opening displacement curves were obtained and the results were analyzed by linear elastic fracture mechanics. The results from the test and analysis showed that critical stress intensity factor and fracture energy increased, and critical crack-tip opening displacement decreased with concrete age from 1 day to 28 days. The obtained fracture parameters at early ages may be used as a fracture criterion and an input data for finite element analysis of concrete at early ages.

  • PDF

Hydration Reaction Properties of Concrete With Binders and Admixtures (결합재와 혼화재 종류에 따른 콘크리트의 수화반응 특성)

  • Cho, Il-Ho;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.27-34
    • /
    • 2008
  • Recently, owing to the development of industry and improvement of building techniques, concrete structures are becoming larger and higher. This study was performed to analyze hydration reation properties of concrete with binders and admixtures, such as OPC, low heat cement, belite rich cement, slag powder, lime powder and fly ash. To investigate effects of PC type superplasticizer on the hydration, experiments involving FT-IR, XRD, DSC, SEM were analyzed at the curing age 1day, 3days and 28days. The hydration reaction rate of OPC concrete slightly delayed at the curing age 1day, blast furnace slag powder and fly ash were more effective. BRC and LHC concretes can be used for concrete structures in winter season.

Basic Creep Model by Considering Autogenous Shrinkage

  • Lee, Yun;Kim, Jin-Keun;Kim, Min-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1071-1076
    • /
    • 2003
  • Basic creep of concrete during very early ages is an important factor on the behavior of young concrete and a great deal of research has been executed. However, in recent studies, it was revealed that the basic creep measured by sealed concrete was inaccurate, especially for high strength concrete because of autogenous shrinkage at early age. This paper presents the results from experimental study that investigate to explore the effect of autogenous shrinkage in basic creep. More specifically, four different mix proportions were casted and the primary variables were water-cement ratios. Through this research, it was found that the differences between apparent specific creep and real specific creep were remarkable in low water-cement ratio at early age. Therefore, it is recommended to modify existing creep model by considering autogenous shrinkage

  • PDF

A Study on the Strength Prediction of Three-Component Concrete by Maturity Method (적산온도 기법을 활용한 3성분계 콘크리트의 강동예측에 관한 연구)

  • 장종호;김영덕;길배수;김정일;남재현;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.237-242
    • /
    • 2003
  • The object of this study is to investigate the strength development properties and the strength prediction of three-component concrete using the fly ash and the blast-furnace slag by a maturity method. The results were as follows. The values of the activation energy on this experiment are calculated as 38.69, 36.47, 32.46, 30.99 KJ/mol in the W/B 60, 55, 50, 45%. And it is considered that the equivalent age can be used to predict strength of the three-component concrete in the optional age. Also the strength of the three-component concrete can be predicted from the result of high correlation between predicted strength and measured strength.

  • PDF

Investigation on the Method of Evaluating the Resistance to Freezing and Thawing of Concrete Subjected Initial Frost Damage (초기동해를 받은 콘크리트의 내동해성 평가법에 대한 검토)

  • 고경택;장일영
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.117-127
    • /
    • 1999
  • In concrete incorporating high volume ground granulated blast-furnace slag that has frozen at early age, to evaluated the results of resistance to freezing and thawing is very difficult because the hydration of the concrete increases over the duration of rapid freezing and thawing test. Hence, the dynamic modulus of elasticity of specimens after freezing and thawing will be favorable results unless the hydration effect is taken into consideration. In this study, a method of evaluating to the resistance to freezing and thawing of concrete subjected freezing at early age, in which the effect of hydration is modified for its increase during rapid freezing and thawing test, is investigated.

Modeling of temperature history in the hardening of ultra-high-performance concrete

  • Wang, Xiao-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.273-284
    • /
    • 2014
  • Ultra-high-performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder ratios are 0.15 to 0.20 with 20 to 30% silica fume. In the production of ultra-high performance concrete, a significant temperature rise at an early age can be observed because of the higher cement content per unit mass of concrete. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of ultra-high performance concrete. The heat evolution rate of UHPC is determined from the contributions of cement hydration and the pozzolanic reaction. Furthermore, by combining a blended-cement hydration model with the finite-element method, the temperature history in the hardening of UHPC is evaluated using the degree of hydration of the cement and the silica fume. The predicted temperature-history curves were compared with experimental data, and a good correlation was found.

A Study on the Drying Shrinkage and Carbonation High Flowing Concrete using Viscosity Agent (증점제를 사용한 고유동콘크리트의 건조수축 및 중성화에 관한 연구)

  • Kwon, Young-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.121-126
    • /
    • 2003
  • This study investigated about several mix factors came up to drying shrinkage and carbonation of high flowing concrete using viscosity. The results are as follows; Drying shrinkage ratio of high flowing concrete using viscosity showed higher for early age, but lower than normal concrete as long age. Also, drying shrinkage ratio and reduction ratio of mass showed higher and relative dynamic modulus of elasticty showed lower as W/C was higher generally. And in case of high flowing concrete using viscosity, carbonation wasn't confirmed without the kinds of cement and viscosity except 50C.

An Experimental Study on the Properties of EPS Concrete according to the Variation of Mix Design (배합조건에 따른 경량 EPS 콘크리트의 물리적 특성에 관한 실험적 연구)

  • Lee, Jung-Koo;Jung, Eun-Hye;Gang, Cheol;Cho, Sung-Hyun;Jeong, Gab-Cheol;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.833-836
    • /
    • 2006
  • The purpose of study is to develope for lightweight concrete panel which have high quality with insulation performance of sound. The use of lightweight concrete products has been increased at a recently high structures. Also, the gathering of nature aggregate is limited, so that lack of fine aggregate is appearing. Statistical analysis is practiced on the properties of EPS concrete according to the variation of mix design. As a result saturated density is affected by amount of Bottom ash.Also compressive strength is affected by W/B ratio at the early age and amount of Bottom ash at the latter age.

  • PDF

FRACTURE OF HIGH-STRENGTH CONCRETE : Implications for Structural Applications

  • Darwin, David
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.11-30
    • /
    • 2000
  • Structural properties of reinforced concrete, such as bond and shear strength, that depend on the tensile properties of concrete are much lower for high-strength concrete than would be expected based on relationships developed for normal-strength concretes. To determine the reason for this behavior, studies at the University of Kansas have addressed the effects of aggregate type, water-cementitious material ratio, and age on the mechanical and fracture properties of normal and high-strength concretes. The relationships between compressive strength, flexural strength, and fracture properties were studied. At the time of test, concrete ranged in age from 5 to 180 days. Water-cementitious material ratios ranged from 0.24 to 0.50, producing compressive strengths between 20 MPa(2, 920 psi) and 99 MPa(14, 320psi). Mixes contained either basalt or crushed limestone aggregate, with maximum sizes of 12mm(1/2in). or 19mm(3/4in). The tests demonstrate that the higher quality basalt coarse aggregate provides higher strengths in compression than limestone only for the high-strength concrete, but measurably higher strengths in flexure, and significantly higher fracture energies than the limestone coarse aggregate at all water-cementitious material ratios and ages. Compressive strength, water-cementitious material ratio, and age have no apparent relationship with fracture energy, which is principally governed by coarse aggregate properties. The peak bending stress in the fracture test is linearly related to flexural strength. Overall, as concrete strength increases, the amount of energy stored in the material at the peak tensile load increases, but the ability of the material to dissipate energy remains nearly constant. This suggests that, as higher strength cementitious materials are placed in service, the probability of nonductile failures will measurably increase. Both research and educational effort will be needed to develop strategies to limit the probability of brittle failures and inform the design community of the nature of the problems associated with high-strength concrete.

  • PDF