• Title/Summary/Keyword: concrete strength

Search Result 10,935, Processing Time 0.043 seconds

An experimental Study on the Strength Control of High Fluidity Concrete by Maturity (적산온도방식에 의한 고유동콘크리트의 강도관리에 관한 실험적 연구)

  • 김무한;남재현;김규용;길배수;한장현
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.79-87
    • /
    • 2000
  • The strength development of concrete is influenced by temperature and cement type which greatly affect hydration degree of cement. There is not pertinent concrete strength management methods for estimating the in-place strength of concrete. One such method is the maturity concept. The maturity concept is based on the fact that concrete gains strength with time as a result of the cement hydration and, thus the rate of hydration, as in any chemical reaction, depends primarily on the concrete temperature during hydration. Thus, the strength of concrete is function of its time-temperature history. This goals of the present study are to investigate a relationship between strength of high-fluidity concrete and maturity that is expressed as a function of an integral of the curing period and temperature, predict strength of concrete.

A Study on Strength of shear Connectors in Composite Beams of Steel and Lightweight Concrete Slabs with Deck Plate (덱크플레이트를 사용한 경량콘크리트 슬래브와 철골보의 합성보에서 쉬어코넥터의 내력에 관한 연구)

  • 김종식;박성무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.293-298
    • /
    • 1995
  • The strength of shear connectors embedded in lightweight concrete slab with deck plate is influenced by various factors of deck plate, shear conncetor and concrete. Generally, it is reported that the strength of shear connector in lightweight concrete decreases in comparison with that in normal concrete. So this paper is to use compressive strength of lilghtweight concrete, width-height ratio of deck plate, and cross sectional area of shear conncetor as variables, to evaluate the strength of shear conncetors in composite beam of steel and lilghtweight concrete slabs with deck plate, and then to suggest the reasonable strength equation by comparing the push-out test results with establixhed strength formula. As the result of 24 specimens test, in case of lightweight concrete slab with deck plate, it has showed that in the same strength, the strength of shear connector decreased about 10~20% in comparison with that in normal concrete. In spite of lightweight concrete, the test results were closely approached the established strength formula of shear connector using Fisher's reduction coefficient.

  • PDF

Strength Development of High-Strength Concrete in Structure

  • Msuda, Yochihiro
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.31-45
    • /
    • 2000
  • Because of the high unit cement content in the concrete mix, major concrete temperature rises are observed in the initial stages of hardening in structural members with large cross-sections made of high-strength concrete. While this temperature rise in the initial stages of hardening contributes to the initial development of the concrete strength, it also causes thermal cracking and obstructs medium to long-term increases of the concrete strength. In the study reports below, investigations were made on the effects of the concrete temperature rise in the initial stages of hardening on the medium to long-term development of the strength of structural concrete between the ages of 28 and 91 days. In the study, comparisons were made, for example, between the compressive strength of a control specimen subjected to standard curing at 28 days and the compressive strength of core specimens taken from structural members, and observations were made on the methods of evaluating the concrete strength in structure, defined here as the compressive strength of core specimens at 91 days. The results obtained indicate that, when the maximum temperature of the concrete is the structure does not exceed $60^{\circ}C$, the concrete strength in structure at the age of long-term will generally be greater than the compressive strength of the standard-curing specimens at 28 days, allowing one to evaluate the strength of the structural concrete in terms of the compressive strength of the 28-days standard-curing specimens. When, on the other hand, the maximum temperature of the concrete in the structure exceeds $60^{\circ}C$, the strength in concrete structure may be smaller than the compressive strength of the 28-days standard-curing specimens, creating risks in the evaluation of the concrete strength in structure by latter.

  • PDF

Nominal Torsional Moment Strength of RC Beam with Torsional Moment Strength of Concrete (콘크리트의 비틀림강도를 포함한 RC보의 공칭비틀림강도)

  • 박창규
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.3
    • /
    • pp.73-84
    • /
    • 2002
  • Nominal shear strength of concrete beam is the combined strength of concrete shear strength and steel shear strength in current design code. But Torsional moment strength of concrete is neglected in calculation of the nominal torsional moment strength of reinforced concrete beam in current revised code. Tensile stress of concrete strut between cracks is still in effect due to tension stiffening effect. But the tensile stresses of concrete after cracking are neglected in bending and torsion in design. The torsional behavior is similar to the shear behavior in mechanics. Therefore the torsional moment strength of concrete should be concluded to the nominal torsional moment strength of reinforced concrete beam. To verify the validity of the proposed model, the nominal torsional moment strengths according to CEB, two ACI codes(89, 99) and proposed model are compared to experimental torsional strengths of 55 test specimens found in literature. The nominal torsional moment strengths by the proposed model show the best results.

Neuro-fuzzy based approach for estimation of concrete compressive strength

  • Xue, Xinhua;Zhou, Hongwei
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.697-703
    • /
    • 2018
  • Compressive strength is one of the most important engineering properties of concrete, and testing of the compressive strength of concrete specimens is often costly and time consuming. In order to provide the time for concrete form removal, re-shoring to slab, project scheduling and quality control, it is necessary to predict the concrete strength based upon the early strength data. However, concrete compressive strength is affected by many factors, such as quality of raw materials, water cement ratio, ratio of fine aggregate to coarse aggregate, age of concrete, compaction of concrete, temperature, relative humidity and curing of concrete. The concrete compressive strength is a quite nonlinear function that changes depend on the materials used in the concrete and the time. This paper presents an adaptive neuro-fuzzy inference system (ANFIS) for the prediction of concrete compressive strength. The training of fuzzy system was performed by a hybrid method of gradient descent method and least squares algorithm, and the subtractive clustering algorithm (SCA) was utilized for optimizing the number of fuzzy rules. Experimental data on concrete compressive strength in the literature were used to validate and evaluate the performance of the proposed ANFIS model. Further, predictions from three models (the back propagation neural network model, the statistics model, and the ANFIS model) were compared with the experimental data. The results show that the proposed ANFIS model is a feasible, efficient, and accurate tool for predicting the concrete compressive strength.

An Experimental Study on Physical Properties of Concrete using Admixtures for High Strength Concrete (고강도 콘크리트용 혼화재를 사용한 콘크리트의 물성에 관한 실험적 연구)

  • 이승한;배재길;이종석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.203-208
    • /
    • 1994
  • These tests were conducted to get a device high strength concrete products in factory using admixtures for high strength concrete. The superplasticzer was used to compensate low slump of base concrete keeping its slump up about $6\pm1cm$. To examine the property for strength revelation of concrete using admixtures for high strength concrete, steam and standard curing were compared each other. Test results show that admixtures for high strength concrete is effective in steam curing and compressive strength 500kgf/$\textrm{cm}^2$ is obtained at one day, 650kgf/$\textrm{cm}^2$ at 28days as added to concrete at the ratio of 10-15%, and 740kgf/$\textrm{cm}^2$ at the ratio of 30%. Therefore admixtures for high strength concrete is effective in steam curing and make it possible to get high strength concrete using only steam curing not using autoclave curing.

  • PDF

Flexural Strength of Dual Concrete Beams Composed of Fiber Reinforced Concrete and Normal Concrete (섬유보강 콘크리트와 보통콘크리트로 합성된 이중 콘크리트 보의 휨 강도)

  • 박대효;부준성;조백순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.579-584
    • /
    • 2001
  • The reinforced concrete(RC) beam is developed cracks because the compression strength of concrete is strong but the tensile strength is weak. The structural strength and stiffness is decreased by reduction of tension resistance capacity of concrete due to the developed cracks. Using the fiber reinforced concrete that is increased the flexural strength and tensile strength at tensile part can enhance the strength and stiffness of concrete structure and decrease the tensile flexural cracks and deflection. Therefore, The reinforced concrete used the fiber reinforced concrete at tensile part ensure the safety and serviceability of the concrete structures. In this study, analytical model of a dual concrete beam that is composed of the normal strength concrete at compression part and the high tensile strength concrete at tensile part is developed by using the equilibrium condition of forces and compatibility condition of strains and is parted into elastic analytical model and ultimate analytical model. Three group of test beam that is formed of one reinforced concrete beam and two dual concrete beams for each steel reinforcement ratio is tested to examine the flexural behavior of dual concrete beams. The comparative study of total nine test beams is shown that the ultimate load of a dual concrete beams relative to the reinforced concrete beams have an increase in approximately 30%. In addition, the initial flexural rigidity, as used here, refer to the slope of load-deflection curves in elastic state is increased and the deflection is decreased.

  • PDF

An experimental study on fracrture-medhanics behavior of the crushed concretes (부순모래 콘크리트의 파괴역학적 특성에 관한 연구)

  • 김진근;이칠성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.99-104
    • /
    • 1994
  • Recently, nonlinear fracture mechanics was applied to analyze concrete structures more accurately, and new materials property such as fracture energy(Gf) was used for its application. The fracture energy was influenced by many parameters, especially the strength of concrete. Many researches on the relation between the strength of concrete and the fracture energy were performed. In spite of many researches on the relation between the strength of concrete and the fracture energy, there is no distinct conclusion. This research includes various the strength levels from low-strength of concrete to high-strength, and then intends to estimate relation between the strength of concrete and the fracture energy. Concrete used crushed sand is also included, which is going to be used much. In this research, the wedge splitting test method proposed by Prof. Linsbauer is adopted to investigate the fracture energy. Fracture behavior of concrete used natrual sand and crushed sand has the similar trend. In the strength range of 200~500 kg/$\textrm{cm}^2$, the fracture energy and the maximum splitting forces(F) increase as the strength of concrete increases. In the range of the higher strength, however, the maximum splitting forces(F) increases but the fracture energy decreases as the strength of concrete increases. Through this investigation the fracture energy of concrete was not proportional to the strength of concrete.

  • PDF

Experiments for the Fatigue Behavior of High Strength Concrete (고강도콘크리트의 피로거동에 관한 실험적 연구)

  • 김진근;김윤용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.161-166
    • /
    • 1992
  • In this paper, the effect of compressive strength on the fatigue behavior of plain concrete was studied. The fatigue behavior of plain concrete in uniaxial compression is somewhat affected by the compressive strength of the concrete. Concrete cylindrical specimens(100$\times$200mm) with compressive strength of 265kg/$\textrm{cm}^2$, 530kg/$\textrm{cm}^2$ , 860kg/$\textrm{cm}^2$ and 1053kg/$\textrm{cm}^2$ were tested and analyzed on the fatigue strength, In addition to fatigue strength, the deformation characteristics of the concrete subjected to fatigue loading was investigated. The fatigue strength was decreased for the high-strength concrete. The deformation studies indicated that the irrecoverable strain in normal strength concrete is greater than that in high strength concrete.

  • PDF

A Study on the Prediction of Concrete Strength Based on Maturity Method for Calculating the Concrete Strength Correction Value (mSn) of Two-Component Concrete (2성분계 콘크리트의 구조체 보정강도(mSn) 산정을 위한 적산온도 기반 콘크리트의 압축강도 예측 연구)

  • Kim, Han-Sol;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.129-130
    • /
    • 2023
  • The compressive strength of concrete is greatly affected by the temperature inside the concrete at the initial age immediately after pouring. In the KCI Concrete Standard Specification, only the temperature correction strength (Tn) according to the curing temperature is applied in the mixing strength calculation formula, and mSn is not considered. The formula based on the Chrino model of the blast furnace slag concrete was calculated, and the strength of the structural concrete and the strength of the water cured specimen in the same mixture were compared with the predicted strength. As a result, the error between the predicted strength and the measured strength was greater in the structural concrete than in the concrete specimen.

  • PDF