• 제목/요약/키워드: concept exploration

Search Result 209, Processing Time 0.025 seconds

Design & Test of Stereo Camera Ground Model for Lunar Exploration

  • Heo, Haeng-Pal;Park, Jong-Euk;Shin, Sang-Youn;Yong, Sang-Soon
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.693-704
    • /
    • 2012
  • Space-born remote sensing camera systems tend to be developed to have very high performances. They are developed to provide extremely small ground sample distance, wide swath width, and good MTF (Modulation Transfer Function) at the expense of big volume, massive weight, and big power consumption. Therefore, the camera system occupies relatively big portion of the satellite bus from the point of mass and volume. However, the camera systems for lunar exploration don't need to have such high performances. Instead, it should be versatile for various usages under various operating environments. It should be light and small and should consume small power. In order to be used for national program of lunar exploration, electro-optical versatile camera system, called MAEPLE (Multi-Application Electro-Optical Payload for Lunar Exploration), has been designed after the derivation of camera system requirements. A ground model of the camera system has been manufactured to identify and secure relevant key technologies. The ground model was mounted on an aircraft and checked if the basic design concept would be valid and versatile functions implemented on the camera system would worked properly. In this paper, results of design and functional test performed with the field campaigns and air-born imaging are introduced.

An Interindustry Analysis Considering Complexity of Space Exploration Project (우주개발사업의 복합성을 고려한 산업연관분석)

  • Lee, Eui-Kyung;Hur, Hee-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.739-744
    • /
    • 2014
  • Space exploration project usually consists of so many fields of sub projects that it has a diverse ripple effect throughout the economy. Further studies could not consider the complexity of the space exploration project because they regarded it as one project in spite of the diversity. This study found a way to consider complexity of space exploration project using the concept of WAC(weighted average coefficient). The moon exploration project (2014~2020) is the subject of this study. We classified the moon exploration project into 8 industries and calculated the WAC of production inducement coefficient, value added inducement coefficient, and employment inducement coefficient. The result of analysis using these WACs is that production inducement effect amounts to 1,229.6 billion won, value added inducement effect 324.6 billion won, employment inducement effect 4,844 men. And the linkage effect analysis shows that moon exploration project has more backward linkage effect than forward linkage effect.

Preliminary design of lunar lander propulsion system and ground test model (달착륙선 추진시스템 기본 설계 및 지상 모델 설계)

  • Kim, Su-Kyum;Yu, Myoung-Jong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.581-584
    • /
    • 2010
  • Korea Aerospace Research Institute (KARI) started preliminary research about the propulsion system for lunar orbiter and moon lander this year in order to prepare korean moon exploration plan of 2020s. The final goal of this study is to develop a prototype propulsion system for lunar exploration and to perform ground landing test using this propulsion system. In this year, preliminary design of propulsion system and 200N class monopropellant thruster have been conducted. In this paper, the trade-off study result and the design concept of the propulsion system for Korean moon exploration will be introduced and preliminary design of propulsion system will be presented.

  • PDF

Development of Design Space Exploration for Warship using the Concept of Negative Design (네거티브 설계 개념을 이용한 함정 설계영역탐색법 개발)

  • Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.412-419
    • /
    • 2019
  • Negative space in the discipline of art defines the space around and between the subject of an image. The use of negative space is an element of artistic composition, since it is occasionally used to artistic effect as the "real" subject of an image. In painting, it is a technique that negatively touches the background of an object to be expressed, so that it gives a feeling of unique texture and silhouette by touching unnecessary parts while leaving necessary parts. As in art, negative space in a design can also be useful to identify an image of infeasible design ranges with a straightforward view. Similarity between two disciplines leads to the introduction of the negative space concept for design space exploration. A rough design space exploration using statistics and visual analytics may support more efficient decision-making, and can provide meaningful insights into the direction of early-phase system design. For this, the approach guarantees dynamic interactions between visualized information and human cognitive systems. Visual analytics is useful to summarize complex and large-scale data. It is useful for identifying feasible design spaces, as well as for avoiding infeasible spaces or highly risky spaces. This paper investigates the possible use of the negative space concept by using an application example.

A Study of Compensation Algorithm for Localization based on Equivalent Distance Rate using Estimated Location Coordinator Searching Scheme (예상 위치좌표 탐색기법을 적용한 균등거리비율 기반 위치인식 보정 알고리즘 연구)

  • Kwon, Seong-Ki;Lee, Dong-Myung;Lee, Chang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3571-3577
    • /
    • 2010
  • The estimated location coordinator exploration scheme and the E&E(Equivalent distance rate & Estimated location coordinator exploration) compensation algorithm for localization is proposed, and the performance of the E&E is analyzed in this paper. The proposed scheme is adapted to the AEDR(Algorithm for localization using the concept of Equivalent Distance Rate). From several experiments, it is confirmed that the performance of the localization compensation in SDS-TWR is improved from 0.60m to 0.34m in four experimental scenarios, and the performance of the localization compensation ratio of the E&E is also better than that of the AEDR as a level of maximum 15%. It can be thought that the proposed localization compensation algorithm E&E can be sufficiently applicable to various localization applications because the performance of the localization error rate of the E&E is measured as less than 1m in 99% of the total performance experiments.

Concept Analysis about Workers Health (산업체 근무 생산직 근로자의 건강에 대한 개념분석)

  • 조정민;김분한
    • Journal of Korean Academy of Nursing
    • /
    • v.30 no.2
    • /
    • pp.272-281
    • /
    • 2000
  • The purpose of this study is to clarify the phenomenon worker's health as a basis for the future study. Concepts help us to identify how experiences are similar or equivqlent by categorizing all the things that are similar. The concept of health in workers was investigated using the Chinn and Krammer's method. The process of analysis involves choosing the concept, clarifying the purpose, using evidence of data, exploration of context, and value and category formalization. Dimensions of health in workers were identified as follows: \circled1 clinical dimension \circled2 role execution \circled3 coping with dimensia \circled4 mental well being \circled5 possibility \circled6 concrete activity \circled7 symbolization \circled8 hardiness Characteristics of anality of health in workers are activity, dimension of symbolization and of hardiness. Through this study it is identified that health in workers is with the beyond physical well-being, focused functional ability, and harmony environment.

  • PDF

Working Mechanisms of Organizational Ambidexterity for Creative Performance (창의적 성과를 제고하는 조직 양면성 구현양식에 대한 연구)

  • Kwon, Jung-Eon;Woo, Hyung-Rok
    • Knowledge Management Research
    • /
    • v.17 no.2
    • /
    • pp.51-73
    • /
    • 2016
  • The organizational ambidexterity has been emerging as the way to gain competitive advantage in turbulent environment. The concept of ambidexterity is simultaneously accomplishing the balance between the activities of exploration and exploitation, and overcoming their conflicting tension. The beneficial merits of ambidexterity has been investigated in innovation, financial performance, strategic management, and etc. Our study focused on the impact of ambidextrous activities on creative performance. Although three ambidextrous modes-structural ambidexterity, contextual ambidexterity, and sequential ambidexterity-have been already acknowledged, scant studies suggested the specific mechanisms to achieve ambidexterity in practice at the operating level. To address the issue we performed the semantic network analysis on the basis of the previous literatures prescribing ambidexterity theory. We took interview with 21 teams to explore behaviors of teams from the ambidextrous perspective, and then interpreted the relationship among words which appeared in the interview. This study found the appropriate mechanism which alleviate tension revealed by exploitation and exploration exist as practical reality. We demonstrated how these ambidextrous mechanisms can be used to generate the creative performance as well as examined various antecedents. These findings would contribute to the more fine-grained understanding of organizational ambidexterity, especially in conjunction with organizational creativity.

THE PROSPECT OF INTERSTELLAR OBJECT EXPLORATIONS FOR SEARCHING LIFE IN COSMOS (우주생명현상과 성간천체 탐사 전망)

  • Minsun Kim;Ryun Young Kwon;Thiem Hoang;Sungwook E. Hong
    • Publications of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.25-36
    • /
    • 2023
  • Since interstellar objects like 1I/'Oumuamua and 2I/Borisov originate from exoplanetary systems, even if we do not visit the exoplanetary systems, flyby, rendezvous, and sample return missions of interstellar objects can provide clues to solve the mysteries of cosmic life phenomena such as the origin of exoplanetary systems, galactic evolution, biosignatures (or even technosignatures), and panspermia. In this paper, we review space missions for interstellar object exploration in the stage of mission design or concept study such as Project Lyra, Bridge, Comet Interceptors, and LightcraftTM. We also review space missions, OSIRIS-REx and NEA Scout, designed for Near Earth Asteroids(NEA) explorations, to investigate the current state of basic technologies that can be extended to explore interstellar objects in a velocity of ~ 6AU/year. One of the technologies that needs to be developed for interstellar object exploration is a spacecraft propulsion method such as solar sail, which can catch up with the fast speed of interstellar objects. If this kind of propulsion becomes practical for space explorations, interstellar object explorations will mark a new era and serve as a driving force to provide evidences of cosmic life.

A Study on the System Design for Deep-Space Probe Reference Model (표준 심우주 탐사선 시스템 설계 연구)

  • Euikeun Kim;Hyeon-Jin Jeon
    • Journal of Space Technology and Applications
    • /
    • v.3 no.1
    • /
    • pp.44-57
    • /
    • 2023
  • In order for a latecomer in deep-space exploration such as Korea to quickly keep pace with advanced deep-space exploration countries in the mutually-beneficial space exploration market, it is essential to derive a deep-space probe reference model that can reduce development period and cost. In this paper, concept and configuration for the deep-space probe reference model consisting of basic, lightweight, and expansion types are newly presented, which are based on commonly required designs for various deep-space probes. The proposed configuration adopts modular design so that the expandability and design/implementation efficiency are improved. In addition, the electrical system design pursuing lightweight and expandability is also described, which is applicable to the proposed three-types of deep-space probe reference model.

OPTIMAL TRAJECTORY DESIGN FOR HUMAN OUTER PLANET EXPLORATION

  • Park Sang-Young;Seywald Hans;Krizan Shawn A.;Stillwagen Frederic H.
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.285-289
    • /
    • 2004
  • An optimal interplanetary trajectory is presented for Human Outer Planet Exploration (HOPE) by using an advanced magnetoplasma spacecraft. A detailed optimization approach is formulated to utilize Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine with capabilities of variable specific impulse, variable engine efficiency, and engine on-off control. To design a round-trip trajectory for the mission, the characteristics of the spacecraft and its trajectories are analyzed. It is mainly illustrated that 30 MW powered spacecraft can make the mission possible in five-year round trip constraint around year 2045. The trajectories obtained in this study can be used for formulating an overall concept for the mission.

  • PDF