• Title/Summary/Keyword: concentration of solution

Search Result 6,757, Processing Time 0.046 seconds

EVALUATION OF SODIUM DICHLOROISOCYANURATE AS A ROOT CANAL IRRIGATION SOLUTION;Cl- CONCENTRATION, pH, CYTOTOXICITY AND ANTIMICROBIAL EFFECT IN VITRO (이염화이소시아뉼산나트륨 제재의 근관세척액 사용 가능성 평가;염소이온농도, 세포독성, 항균성 및 pH)

  • Lee, Woo-Cheol;Kang, Bong-Sun;Kim, Cheol-Ho;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.5
    • /
    • pp.425-430
    • /
    • 2003
  • The purpose of this study was to evaluate the clinical applications of the Sodium Dichloroisocyanurate effervescent tablet as a routine root canal irrigant by performing several in vitro tests such as $Cl^{-}$ content. cytotoxicity. antimicrobial effect as well as its pH level compared to the equivalent concentration of sodium hypochlorite solution. 1. Sodium Dichloroisocyanurate demonstrated lower level of $Cl^{-}$ concentration than each dilution of sodium hypochlorite solution. Both solution has increased level of $Cl^{-}$ as the concentration of each solution increased. There was no significant change of $Cl^{-}$ concentration in sodium hypochlorite as time goes by. However. $Cl^{-}$ concentration in Sodium Dichloroisocyanurate was increased. 2. The antimicrobial effects of both solutions were increased when their concentrations were increased. One day after dilution. antimicrobial effect of Sodium Dichloroisocyanurate was slightly higher than sodium hypochlorite. however. there was no difference in 1 week dilution solution. One month dilution solution of sodium hypochlorite still retain its activity. but antimicrobial effect of Sodium Dichloroisocyanurate was drastically decreased 1 month after dilution. 3. The cytotoxicity of Sodium Dichloroisocyanurate was rather higher than same concentration of sodium hypochlorite solution until 1 week after dilution. Then in 1 month. cytotoxicity of Sodium Dichloroisocyanurate was decreased than that of 1 week dilution solution. especially 4% Sodium Dichloroisocyanurate solution has almost no toxicity. However. 1% and 2% sodium hypochlorite solution has unchanged moderate degree of cytotoxicity after the dilution. Furthermore. 4% sodium hypochlorite solution showed high level of toxicity. 4. The pH level of Sodium Dichloroisocyanurate showed that the solution was weak acid (pH5). On the other hand. sodium hypochlorite was revealed as a strong alkaline solution (pH12). There was no change in pH following the dilution of each solution. As results. Sodium Dichloroisocyanurate solution fully satisfy the basic requirements as a root canal irrigation solution. However. we strongly recommend to use this solution clinically in low concentration and try to apply into the root canal within 1 week after dilution.

Study on the Crevice Corrosion of Mild Steel in Fluid Environment (유체환경 중에서 연강재의 간극부식에 관한 연구)

  • Lim, Uh Job;Yun, Byoung Du
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.373-378
    • /
    • 2000
  • The crevice corrosion of local corrosion occur when the gap exist on metal surface. This crevice corrosion happen to region such as flange of pipe, contact part of casing, under gasket and packing, between valve disk and seat of pump etc. Especially The crevice corrosion of mild steel(SS 400) get serious. This paper was studied on the crevice corrosion of SS 400 in fluid environment. In $0\%,\;2\%,\;3.5\%,\;5\% NaCl$ solution, the aspect of the crevice corrosion and polarization behavior under the crevice corrosion was investigated. And Weight loss rate of SS 400 with crevice and non-crevice was measured according to the NaCl concentration. The main results obtained are as follows : 1) Under crevice corrosion, the corrosion potential become less noble as the concentration of NaCl solution increased. 2) The current density under open circuit potential was high drained as concentration of NaCl solution increased by $3.5\%$ but the concentration increased over $3.5\%$, the current density was low drained. 3) The weight loss rate of SS 400 was increased as concentration of NaCl solution Increased by $3.5\%$, but the concentration increased over $3.5\%$, that of SS 400 was decreased. 4) Effect of oxygen for crevice corrosion in the concentration of $3.5\%$ NaCl solution become sensitive than that $0\%$ NaCl solution.

  • PDF

A study on the Manufacture of the CuO Powder from Copper Chloride Solution by Spray Pyrolysis Process (분무열분해법에 의한 구리염화물 용액으로부터 CuO 분말 제조에 관한 연구)

  • Yu, Jae-Geun;Park, Hui-Beom
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.58-67
    • /
    • 2002
  • In this study copper chloride(CuCl$_2$) solution was used as raw material to produce the fine copper oxide powder which has less than 1 $\mu\textrm{m}$ average particle size and has uniform particle size distribution by spray pyrolysis process. In the present study, the effects of reaction temperature, the injection speed of solution and air, the nozzle tip size and the concentration of raw material solution on the properties of produced powder were studied. The structure of the powder became much more compact with increasing the reaction temperature regardless of copper concentration of the raw material solution. The particle size of the powder increased accordingly with increasing the reaction temperature in case of 30 g/$\ell$ copper concentration of the solution. The particle size of the powder increased accordingly, and the surface structure of the powder became more porous with increasing the copper concentration of the raw material solution. When copper concentration in raw material solution was more than 100 g/$\ell$, all produced powder was CuCl regardless of reaction temperatures. When copper concentration in solution was below 30 g/$\ell$ and reaction temperature was higher than 90$0^{\circ}C$, CuO was the main phase. The surface of the powder tended to become porous with increasing the injection speed of solution. Particle size was increased and the surface of the powder showed severely disrupted state with increasing the nozzle tip size. The particle size was decreased and the particle size distribution was more uniform with increasing the air pressure through the nozzle.

Development of Nutrient Solution Control System for Water Culture (수경재배(水耕栽培)의 양액관리(養液管理) 자동화(自動化) 시스템 개발(開發))

  • Lee, K.M.;Lee, J.S.;Sun, C.H.;Jang, I.J.;Song, J.G.;Koo, G.H.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.4
    • /
    • pp.328-338
    • /
    • 1990
  • The objective of this study was to develop automatic systems of nutrient solution management for optimal nutrient solution environment and labor saving in water culture which enables factory crop production. In this study, an automatic control system and its driving program are developed to prepare, supply, and recover nutrient solution and to keep the optimal solution concentration level using microcomputers. Based on this study, the following conclusions are obtained: 1. The concentration measured by the system using oscillating circuit designed and built in this study, gave good agreements with the actual nutrient solution. 2. In water culture, the period of 12 hours for measuring concentration, pH, and temperature of the nutrient solution was optimum. Addition of control solution due to the decrease of the nutrient solution concentration is required in every 3 to 5 days. 3. It is estimated that the period of the whole solution change is 15 days, however, further research is needed to assure it. In addition, this period must be shortened in the future. 4. Both the hardware and software of the developed optimal nutrient solution control system in the water culture are working very well, however, it is necessary to develop a more economical one-chip micro controller to substitute for the microcomputer.

  • PDF

Study on the Characteristics of Crevice Corrosion Prevention of SS 400 in Marine Environment (해양환경 중에서 SS400강재의 간극부식방지 특성에 관한 연구)

  • 임우조;정기철;구영필;윤병두
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.152-157
    • /
    • 2001
  • This paper was studied on the characteristics of crevice corrosion prevention of SS 400 in marine environment. In NaCl solution, polarization behavior under the crevice corrosion was investigated. And Weight loss rate of SS 400 applied cathodic protection and non cathodic protection was measured according to the NaCl concentration. The main results obtained are as follows : The weight loss rate of Al-alloy galvanic anode was increased as the concentration of NaCl solution increased by 3.5% but the concentration increased over 3.5%, that of Al-alloy galvanic anode become decreased. The protective potential of SS 400 used Al-alloy galvanic anode becomes more cathodic polarization with increasing concentration of NaCl solution. Effects of oxygen on the weight loss rate of Al-alloy sacrificial anode for cathodic protection as the concentration of 3.5% NaCl solution become sensitive than that of 0% NaCl solution.

  • PDF

The Degumming and Sericin Recovery of the Silk fabric Using the Electrolytic Water(II) (전해수를 이용한 견섬유 정련 및 세리신 회수(II)-분리막에 의한 세리신 농축을 중심으로-)

  • 배기서;이태상;노덕길;홍영기
    • Textile Coloration and Finishing
    • /
    • v.16 no.4
    • /
    • pp.10-18
    • /
    • 2004
  • In this work, Aqueous sericin solution was prepared by degumming process with electrolytic reduction water. Then, the microfiltration and ultrafiltration systems were applied to the concentration of aqueous sericin solution. The objective of this study was to select the optimum operating condition among the different pressure. The permeate flux and rejection ratio were observed with time, pressure, flow rate and concentration. and, the wastewater and permeated water quality values such as pH, BOD, COD, and NH levels were measured. In order to see the influence of electrolytic reduction water, the flux of pure water and electrolytic reduction water by PVDF22(MF) and PS100(UF) membrane was measured. In microfiltration system, the relative flux reduction decreased rapidly to 0.02 in the 30min, as the concentration polarization and gel layer formation were increased. and then the sericin concentration rejection ratio was 40%. In ultrafiltration system, the permeate flux decreased with time and concentration, and increased with the operating pressure and flow rate. Optimal condition in PS100 membrane system for sericin concentration was operating pressure 1.464kgf/$cm^24, operating flow rate $7\ell/min at\; 40^{\circ}C$. At that time, sericin concentration rejection ratio was 83% respectably. The sericin solution was concentrated from 0.1wt% solution to 0.2 wt % solution during about 2 hrs by the UF filteration membrane system.

Effects of the Different Concentration of the Nutrient Solution on the Growth and the Inorganic Matter Contents of Three Kinds of Fall Planting Namul Resources in Water Culture (양액농도가 추식 수경재배 나물자원 3종의 생장과 무기물 함량에 미치는 영향)

  • Cho, Ja-Yong;Kim, Hong-Gi;Yang, Seung-Yul;Park, Yun-Jum;Kim, Hyun-Ju;Heo, Buk-Gu
    • Journal of Bio-Environment Control
    • /
    • v.16 no.1
    • /
    • pp.7-12
    • /
    • 2007
  • This study was conducted to clarify the effects of the different concentration of the nutrient solution on the early growth and the nutritional contents of hydroponically grown Aster koraiensis, Hemerocallis fulva and Plantago asiatica at 70 days after transplanting in perlite culture. Balanced nutrient solution formulated by Japanese Horticultural Experiment Station was used as the standard concentration of the nutrient solution. Overall plant growth of Aster koraiensis and Hemerocallis fulva such as plant height, stem diameter, number of loaves, fresh and dry shoot and root weight were significantly increased in 1.5 times concentration of nutrient solution. Shoot and root fresh and dry weight of hydroponically grown Plantago asiatica were significantly increased in the higher concentration of the nutrient solution, however, number of loaves and root length were significantly increased in the standard and the lower concentration of the nutrient solution. The highest contents of calcium, magnesium and sodium in plants were shown in Aster koraienxis which were grown in the 1.5 times concentration of nutrient solution, and Hemerocallis fulva and Plantago asiatica in 0.25 times of that. The contents of potassium in Aster koraiensis and Hemerocallis fulva were significantly increased when the plants were grown in the 0.5 times concentration of the nutrient solution, and that in Plantago asiatica in the 1.5 times concentration of the nutrient solution. The contents of phosphoric acid in plants as affected by the different species of Namul and the different concentration of the nutrient solution were not significant.

Influence of Salt Solution Concentration on Corrosion Pit Growth Characteristic of Dual Phase Steel (복합조직강의 부식피트 성장특성에 미치는 식염수농도의 영향)

  • Oh, Sae-Wook;Kang, Ho-Min;Kim, Tae-Man;Do, Yeong-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.78-86
    • /
    • 1988
  • In order to investigate the corrosion pit occurrence and growth characteristic of M.E.F.(martensite encapsulated islands of ferrite) dual phase steel was made with a suitable heat treatment of raw material(SS41), a corrosion fatigue test was performed under rotary bending in the salt solution having a concentration from 0.01 wt percent to 3.5 wt percent. The fatigue strength of dual phase steel was remarkably decreased with an increase in concentration of salt solution; approximately from 63% to 80% in case of dual phase steel and from 40% to 71% in case of raw material. Corrosion pit occurred in the martensite phase and fatigue cracks from corrosion pits were selectively propagated in martensite phases. In the observation of corrosion pits at the origin of fatigue cracks, it had been found that corrosion pits were grown into hemispherical pits and a/c(the surface diameter, 2c and the depth, a of corrosion pit)was about 1.0-1.5regardless of the variation of salt solution concentration. The difference of corrosion pit depth growth rate was increased with an increase in concentration of salt solution according to an increase in stress level.

  • PDF

Crystallization and high purification of aluminium chloride hexahydrate from kaolin leaching solution (고령토 침출용액으로부터 고순도 염화알루미늄 결정화 분리)

  • 김우식;장희동
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.584-594
    • /
    • 1996
  • For the separation and purification of aluminium chloride hexahydrate crystals from kaolin leaching solution the effects of crystallization conditions, such as crystallization temperature, concentration of aluminium chloride concentration in the leaching solutin and gas flow rate of HCl into the leaching solution, on purity of the aluminium chloride hexahydrate crystals were investigated. The supersaturation level of aluminium chloride in the leaching solution gave great influence on the purity of the crystals. When supersaturated concentration of the aluminium chloride in the leaching solution was generated in low level, the aluminium chloride hexahydrate crystals were produced with high purity ; that is, the crystals hving a low Fe-ion concentration. The supersaturation level of aluminium chloride in the leaching solution was mainly determined by crystallization temperature, concentrations of aluminium chloride and hydrochloric acid in the solution. However, in spite of changes of the above crystallization coditions, a needle shape morphology of aluminium chloride hexahydrate crystals did not modified. To measure hydrochloric acid concentration in the kaolin leaching solution, we applied the oxalate titration method, which was suggested by shank [9] and it was prove that this method could titrate hydrochloroic acid concentration in multi-component ionic solution such as kaolin leaching solution.

  • PDF

Impact of sodium or potassium concentration in glucose aquoes solution to fermentation by Kluyveromyces marxianus (배양액내 나트륨과 칼륨의 농도가 고온 발효 균주 Kluyveromyces marxianus의 발효에 미치는 영향)

  • Song, Woo-Yong;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.3
    • /
    • pp.11-17
    • /
    • 2015
  • In acid hydrolysis process of biomass saccharification. neutralization of acid hydrolyzate is essential step, which resulted in dissolved cations in glucose solution. Impact of cations to Kluyveromyces marxianus in glucose solution was investigated focused on ethanol fermentation. Either potassium or sodium cations decreased the ethanol fermentation and glucose to ethanol conversion. Glucose consumption by K. marxianus was delayed by increasing potassium cation concentration as completely consumed within 12 h in potassium cation 0.46 mol and 0.92 mol but within 24 h in potassium cation 1.38 mol. Also, ethanol fermentation process was slowed down with increasing concentration of the potassium sulfate. Fermentation of glucose solution to ethanol was more inhibited by sodium cation than potassium cation in glucose solution. Glucose was completely consumed within 24 h in sodium cation 0.95 mol. but at 1.90 mol or 2.84 mol in sodium cation could not finish the fermentation within 48 hour. Ethanol concentration was 22.26 g/L at low sodium cation in glucose solution with complete fermentation within 24 h. With increasing sodium cation in glucose solution, final ethanol concentration was reached at 14.10 g/L (sodium cation con) and 0.21 g/L (sodium cation con), which meant delaying of fermentation by sodium cations.