• Title/Summary/Keyword: concentration measure

Search Result 1,474, Processing Time 0.031 seconds

Design of User Concentration Classification Model by EEG Analysis Based on Visual SCPT

  • Park, Jin Hyeok;Kang, Seok Hwan;Lee, Byung Mun;Kang, Un Gu;Lee, Young Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.129-135
    • /
    • 2018
  • In this study, we designed a model that can measure the level of user's concentration by measuring and analyzing EEG data of the subjects who are performing Continuous Performance Test based on visual stimulus. This study focused on alpha and beta waves, which are closely related to concentration in various brain waves. There are a lot of research and services to enhance not only concentration but also brain activity. However, there are formidable barriers to ordinary people for using routinely because of high cost and complex procedures. Therefore, this study designed the model using the portable EEG measurement device with reasonable cost and Visual Continuous Performance Test which we developed as a simplified version of the existing CPT. This study aims to measure the concentration level of the subject objectively through simple and affordable way, EEG analysis. Concentration is also closely related to various brain diseases such as dementia, depression, and ADHD. Therefore, we believe that our proposed model can be useful not only for improving concentration but also brain disease prediction and monitoring research. In addition, the combination of this model and the Brain Computer Interface technology can create greater synergy in various fields.

Mobile Application for Real-Time Monitoring of Concentration Based on fNIRS (fNIRS 기반 실시간 집중력 모니터링 모바일 애플리케이션)

  • Kang, Sunhwa;Lee, Hyeonju;Na, Heewon;Dong, Suh-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.295-304
    • /
    • 2021
  • Learning assistance system that continuously measures user's concentration will be helpful to grasp the concentration pattern and adjust the learning method accordingly to improve the learning efficiency. Although a lot of various learning aids have been proposed, there have been few studies on the concentration monitoring system in real time. Therefore, in this study, we developed an Android-based mobile application that can measure concentration during study by using functional near-infrared spectroscopy, which is used to measure brain activity. First, the task accuracy was predicted at a maximum level of 93.75% from the prefrontal oxygenation characteristics measured while performing the visual Q&A task on 11 college students, and a concentration calculation formula based on a linear regression model was derived. Then, a survey on the usability of the mobile application was conducted, overall high satisfaction and positive opinions were obtained. From these findings, this application can be used as a customized learning aid application for users, and further, it can help educators improve the quality of classes based on the level of concentration of learners.

지하 하수터널 주변의 오염물 거동해석

  • 정일문;한일영;차성수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.327-330
    • /
    • 2002
  • In this study, analyses of contaminant transport are peformed to evaluate the diffusion effect of A sewage tunnel. First, Crank's analytical method is used to measure the concentration change of contaminant with time and space. Two dimensional numerical analysis is performed to measure concentration distribution of contaminant. Both methods show that the diffusion effect is little even after 500 years. This means that when flow converges into the tunnel, the environmental effect of contaminant in tunnel is not serious because there is no advection occurs.

  • PDF

Measurment of Copper Concentration in ACQ, CUAZ, and CB-HDO Solutions by Using a Spectrophotometer

  • Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.450-456
    • /
    • 2010
  • This research was performed to develop the simple techniques to predict the copper concentration in alkaline copper quat (ACQ), copper azole (CUAZ), and bis-(N-cyclohexyl-diazeniumdioxy)-copper (CB-HDO) solutions. Two simple methods measuring the color due to copper compounds were evaluated by using a spectrophotometer. One is to directly measure the color of the preservative solutions. The other is to measure the color developed on the surface of a treated sample with the preservatives. The $L^*$ of the measured color values appeared to be the most sensitive to the change of copper concentration. The $a^*$ values of the preservative solutions tended to be decreased at above a certain concentration condition, and the $b^*$ values showed no trend with the concentration of copper compounds in preservative solutions. The surface color of the treated samples were changed from bluish to greenish as time passed. Both methods showed the high $R^2$ values of the regression models determined by using the lightness, which suggested that the methods might be applicable in preservative-treatment mills for the easy and fast prediction of the copper concentration.

Comparison of Dustiness of Eleven Nanomaterials using Voltex Shaker Method (볼텍스쉐이커를 이용한 11개 나노물질의 분진날림 비교)

  • Lee, Naroo;Park, Jinwoo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.3
    • /
    • pp.273-282
    • /
    • 2018
  • Objectives: Dustiness of nanomaterials is considered as exposure index of essential material. Research on dustiness of nanomaterial is needed to control exposure in workplaces. Method: Dustiness measurement using vortex shaker were installed in the laboratory. Nanomaterials, 1 g, was put in the glass test tube and shaked using vortex shaker. Aerosol dispersed was measured using scanning mobility particle sizer(SMPS) and optical particle counter(OPC). Mass concentration using PVC filter and cassette was measured and TEM grid sampling was conducted. Total particle concentration and size distribution were calculated. Image and chemical composition of particles in the air were observed using transmission electron microscopy and energy dispersive X-ray spectrometer. Eleven different test nanomaterials were used in the study. Results: Rank of mass concentration and particle number concentration were coincided in most cases. Rank of nanomateirals with low concentration were not coincided. Two types of fumed silica had the highest mass concentration and particle number concentration. Indium tin oxide, a mixture of indium oxide and tin oxide, had high mass concentration and particle number concentration. Indium oxide had very low mass concentration and particle number concentration. Agglomeration of nanoparticles in the air were observed in TEM analysis and size distribution. In this study, mass concentration and particle number concentration were coincided and two index can be used together. The range of dustiness in particle number concentration were too wide to measure in one method. Conclusion: Particle number concentration ranged from low concentration to high concentration depend on type of nanomaterial, and varied by preparation and amount of nanomaterial used. Further study is needed to measure dustiness of all nanomaterial as one reference method.

Fuel Concentration Measurements by Laser Rayleigh Scattering (레이저 Rayleigh 산란을 이용한 연료농도의 계측)

  • Kwon, Soon-Tae;Kim, Hyeong-Sig;Lee, Jae-Won;Park, Chan-Jun;Ohm, In-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2008.04a
    • /
    • pp.199-205
    • /
    • 2008
  • In this study, a system to measure continuously the fuel concentration in a steady flow rig on the basis of Rayleigh scattering is presented. The system can be employed to measure both the temporal and the spatial distribution. Also, it is possible to calibrate the system for the measurement of accurate absolute concentration. Firstly, the system was tested at a calibration chamber for the determination of scattering cross section from propane, butane, acetylene, Freon-12 and Genetron 143a. After this, the system was adapted to a steady flow rig to measure the temporal and spatial fuel concentration. The rig is composed of cylinder head, intake manifold, injector, and transparent cylinder which can simulate internal combustion engine. To cope with the problem of Mie scattering interference, a software filter was developed, which is based on the rise time and the time constant of the photomultiplier-amplifier system. The results show that LRS can provide useful informations about concentration field and the software filter is very effective method to remove Mie interference.

  • PDF

Development of a Fast-Response $CO_2$ Analyzer using NDIR Technique and Its Application to SI Engine (비분산 적외선 흡수법을 이용한 고속응답 $CO_2$ 분석기의 제작 및 엔진 적용에 관한 연구)

  • Lee, Jae-Young;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.102-107
    • /
    • 2007
  • A fast response $CO_2$ ($fCO_2$) analyzer for real-time measurement of carbon dioxide concentration during transient states of internal combustion engines has been developed. This analyzer uses non-dispersive infrared absorption (NDIR) technique for measuring $CO_2$ concentration and Kalman filter for removing noise components from output signals. The analyzer has good linearity, repeatability and drift with a response time of 11 ms; it is sufficiently fast to detect $CO_2$ concentration during transient states of internal combustion engines. The $fCO_2$ analyzer was used to measure transient $CO_2$ concentration of exhaust gas of the SI engine with a standard gas analyzer, and the signal of the $fCO_2$ analyzer was compared to that of the standard gas analyzer. The two concentrations were well matched during the steady state, and the $fCO_2$ analyzer could measure the variations of $CO_2$ concentration during the transient state.

Effects of SM-2015 on Blood Alcohol Clearance and Hangover (SM-2015의 혈중 알코올 분해 및 숙취 개선 효과)

  • Shin, Seon-mi;Park, Sun-young;Kim, Tae-yeon
    • The Journal of Internal Korean Medicine
    • /
    • v.38 no.1
    • /
    • pp.20-31
    • /
    • 2017
  • Objectives: This study investigated the effect of SM-2015 on blood alcohol clearance and hangover. We undertook this study to test whether SM-2015 is effective in decreasing blood alcohol concentration and preventing the symptoms of alcohol-induced hangover. Methods: Twenty healthy volunteers participated in this randomized crossover study. All participants were classified between an SM-2015 intake group (test group) and a non-intake group (control group). The primary outcome measure was the difference in blood alcohol concentration and hangover severity scores between the test and control groups. The secondary outcome measure was the difference in a liver function test (LFT) between the test and control groups. Results: After alcohol exposure, the sensitivity scores of blood alcohol concentration and hangover symptoms (sleepiness, dizziness, nausea, weakness, stomach pain, diarrhea, and concentration disorder) were significantly decreased in the SM-2015 intake group compared with the non-intake group. There were no differences in the LFT results between the SM-2015 intake group and the non-intake group. Conclusions: SM-2015 is effective in decreasing blood alcohol concentration and preventing the symptoms of alcohol-induced hangover. Larger studies are required to confirm these findings.

Temperature and Concentration measurement using Semi-conductor diode laser (반도체레이져를 이용한 온도 및 농도의 계측)

  • Chung, D.H.;Noh, D.S.;Ikeda, Yuji
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.168-174
    • /
    • 2000
  • A diode laser sensor system based on absorption spectroscopy techniques has been developed to measure $CO_2$ concentration and temperature non-intrusively in high temperature combustion environments using a 2.0 ${\mu}m$ DFB(Distributed Feedback) laser. Two optics was fabricated in pig-tail fashion and all optical components were implemented in a single box. The evolution of measurement sensitivity was done using test cell by changing sweep frequency and $CO_2$ concentration. Gas temperature was determined from the ratio of integrated line strengths. Species concentration was determined from the integrated line intensity and the measured temperature. The result show that the system has 2% error in wide operation frequency range and accuracy of $CO_2$ concentration was about 3%. The system was applied to measure temperature and concentration in the combustion region of a premixed $CH_4$ +air triangular flame. The measurement results of gas temperature agreed well with thermocouple results. Many considerations were taken into account to reduce optical noise, etalon effect, beam steering and base line matching problem. The evaluations results and actual combustion measurement demonstrate the practical and applicability for in-situ and real time combustion monitoring in a practical system.

  • PDF

Understanding Distributional Attributes of Rural Amenity Resources using Gini's Coefficient (지니계수를 통한 농촌어메니티 자원 집중화 연구)

  • Lee, Sang-Hyun;Choi, Jin-Yong;Oh, Yun-Gyeong;Bae, Seung-Jong
    • Journal of Korean Society of Rural Planning
    • /
    • v.16 no.2
    • /
    • pp.57-64
    • /
    • 2010
  • This study aims to understand the degree of inequality of surveyed amenity resources and identify which resource and region have the highest concentration by estimating Lorenz Curve and the Gini's Coefficient. The Lorenz Curve and Gini's Coefficient derived from economics are introduced as tools for investigating and quantifying regional variability of amenity resources concentration. This study describes the concepts underlying the application of the Gini's coefficient to measure the concentration of amenity resources in 11 regions, Chungbuk Province, Korea. The Lorenz Curve presents a graphical view of the cumulative distribution of amenity resources and the Gini's Coefficient provides a single-parameter measure of the distributional concentration of amenity resources. Also the Gini's Coefficient is compared to the number of amenity resource for understanding distributional difference between concentration and quantitative distribution of amenity resources. The results demonstrate significantly different regional variation according to the amenity variables: almost intact nature, interaction between nature and man, man-made.