본 연구는 성공적인 기업 브랜드 이미지의 구축을 위한 전략으로서 브랜드 인지도에 의한 제품가치의 향상의 필요성을 확인하고 그 실행 방법으로서 크게 브랜드 이미지 분석과 이를 바탕으로 하는 제품 이미지 프로그래밍, 그리고 제품 이미지의 정합성 평가와 관리의 세 단계로 구성되는 제품 이미지 집중 체계 (PICS : Product Image Concentration System)를 제안하여 기업의 경쟁력 강화와 브랜드 관리를 위한 지침으로 활용하도록 하는 데 그 목적이 있다. 먼저 브랜드 이미지 분석은 이미지 연상기법을 통하여 브랜드 이미지의 성향을 파악하는 방법으로서, 제시된 시각적 자료와의 관여방식을 분석하여 기업이미지와 브랜드 이미지의 인지 방향을 측정하고 분석한다. 다음으로 제품 이미지 프로그래밍은 이와 같은 브랜드 이미지에 대한 분석을 바탕으로 디자인철학(Design Philosophy)과 디자인 원칙(Design Principles)을 정립하고, 비쥬얼 포지션 프로그래밍(Visual Position Programming)을 통하여 제품이미지의 지향방향을 가시화 하는 과정이다. 마지막으로 제품이미지 정합성 평가는 디자인 철학과 디자인 원칙의 적용 여부 등을 평가하여 브랜드에 정합한 디자인을 개발할 수 있도록 평가의 기준점을 제시하기 위한 것이다. 이와 같은 제품 이미지 집중 체계 (PICS : Product Image Concentration System)는 기업의 경쟁력 강화와 브랜드 관리를 위한 실제적인 방법으로서 디자인 작업에 있어서 이미지의 주관성으로 인한 계획과 적용 그리고 관리의 문제를 보다 객관적으로 해결하는 지침으로 활용될 수 있을 것으로 기대되며, 향후 표현중심어에 따른 이미지 스펙트럼의 세분화와 이미지의 비교 분석, 또 여기에 나타난 시각적 질서를 규명하는 제품 이미지 해석 프로그램에 대한 연구가 지속되어야 할 것이다.
Objectives: An objective of this study is to apply a thermal image camera which shows various color according to temperature of indoor surface for estimating concentration of airborne fungi. Materials and Methods: While wall temperature were monitored by applying the thermal image camera, airborne bacteria as well as air temperature and relative humidity have been measured in lecture room and toilet of university for seven months. Results: Based on the results obtained from this study, the ranges of temperature and airborne fungi concentration were $20{\sim}24^{\circ}C$ and $20{\sim}400cfu/m^3 $ for red image, $17.5{\sim}20^{\circ}C$ and $35{\sim}150cfu/m^3$ for orange image, $15.5{\sim}17.5^{\circ}C$ and $25{\sim}650cfu/m^3$ for sky-blue image, and $13.5{\sim}15.5^{\circ}C$ and $50{\sim}200cfu/m^3$ for blue image, respectively. The color of indoor surface taken shot by thermal image camera showed consistent trend with temperature of indoor surface. There is, however, little correlation between color of indoor surface and airborne fungi concentration(p>0.05). Among environmental factors, relative humidity in indoor air showed a significant relationship with airborne fungi concentration(p<0.05). Conclusions: The more measurement data for proving statistically an association between color of indoor surface and airborne fungi concentration should be provided to easily estimate indoor level of airborne fungi.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권2호
/
pp.907-923
/
2020
For the severe haze situation in the Beijing-Tianjin-Hebei region, conventional fine particulate matter (PM2.5) concentration prediction methods based on pollutant data face problems such as incomplete data, which may lead to poor prediction performance. Therefore, this paper proposes a method of predicting the PM2.5 concentration based on image analysis technology that combines image data, which can reflect the original weather conditions, with currently popular machine learning methods. First, based on local parameter estimation, autoregressive (AR) model analysis and local estimation of the increase in image blur, we extract features from the weather images using an approach inspired by free energy and a no-reference robust metric model. Next, we compare the coefficient energy and contrast difference of each pixel in the AR model and then use the percentages to calculate the image sharpness to derive the overall mass fraction. Furthermore, the results are compared. The relationship between residual value and PM2.5 concentration is fitted by generalized Gauss distribution (GGD) model. Finally, nonlinear mapping is performed via the wavelet neural network (WNN) method to obtain the PM2.5 concentration. Experimental results obtained on real data show that the proposed method offers an improved prediction accuracy and lower root mean square error (RMSE).
Chlorophyll-a concentration maps of Yongdam reservoir in September and October, 2001 were produced using Landsat ETM imagery and the in-situ water quality measurement data. In-situ water samples were collected on 16th September and 18th October during the satellite overpass. The correlations between the DN values of the imagery and the values of chlorophyll-a concentration were analyzed. The visible bands(band 1, 2, 3) and the near infrared band(band 4) data of September image showed the correlation coefficient values higher than 0.9. The October image showed correlation coefficient values of about 0.7 due to the low variations of chlorophyll-a concentration. Regression models between the DN values of the Landsat ETM image and the chlorophyll-a concentration have been developed for each image. The developed regression models were then applied to each image, and finally the chlorophyll-a distribution maps of Yongdam reservoir were produced. The produced maps showed the spatial distribution of the chlorophyll-a in Yongdam reservoir in a synoptic way so that the tropic state could be easily monitored and analysed in the spatial domain.
고추는 건조과정에서 부패되거나 색이변하는 경우가 발생하므로 건고추 품질을 높이기위해서는 건고추를 선별 할 수 있는 기법이 필요하다. 독립성분분석은 블라인드소스분리에서 가장 널리 사용되는 방법으로 이 기법을 사용하여 건조시킨 고추 영상에서 가장 중요한 성분에 대한 농축영상을 얻는다. 취득한 농축영상은 일반 이진(BW) 영상과 달리 주요 성분만 반영한 것으로 영상의 주요 성분 분포 상태를 알 수 있으며 품질을 판단하여 선별하는 것이 가능하다. 또한, 추출된 농축영상의 크기는 고추의 매운 맛을 내는 주요 성분인 캡사이신류의 양과 관련성이 있음을 알 수 있다. ICA 독립성분을 기반으로 한 농축영상 추출을 통해 고추 건조과정에서 부패되어 색상이 좋지 않거나 캡사이신류과 같은 주요 성분이 없게 된 고추를 선별해하는 방법을 제안한다.
Simultaneous measurement with PLIF(Planar Laser-Induced Fluorescence) and Stereo-PIV(Stereo Particle Image Velocimetry) was performed to investigate the structural characteristics of flow field in Rushton Turbine Mixer. Instantaneous 3D velocity fields are measured by two 2K${\times}$2K CCD cameras focused on an object plane with the angular displacement methods while the concentration fields are obtained through the measurement of the fluorescence intensity of Rhodamine B tracer excited by the second pulse of Nd:Yag laser light. Image distortion due to the camera view-angle is compensated by a mapping function. Finally, the spatial structures of turbulent flow around Rushton turbine were identified by the calculation of synchronized data of the velocity field and concentration field.
Simultaneous measurement with PLIF(Planar Laser-Induced Fluorescence) and Stereo-PIV(Stereoscopic Particle Image Velocimetry) was performed to investigate the structural characteristics of flow field in Rushton Turbine Mixer. Instantaneous 3D velocity fields are measured by two 2K ${\times}$ 2K CCD cameras focused on an object plane with the angular displacement methods while the concentration fields are obtained through the measurement of the fluorescence intensity of Rhodamine B tracer excited by the second pulse of Nd:Yag laser light. Image distortion due to the camera view-angle is compensated by a mapping function. Finally, the spatial structures of turbulent mixing around Rushton turbine were identified by the calculation of cross-correlation fields between the velocity and concentration field.
Vapor-driven solutal Marangoni flow is governed by the concentration distribution of solutes on a liquid-gas interface. Typically, the flow structure is investigated by particle image velocimetry (PIV). However, to develop a theoretical model or to explain the working mechanism, the concentration distribution of solutes at the interface should be known. However, it is difficult to achieve the concentration profile theoretically and experimentally. In this paper, to find the concentration distribution of solutes around 2D droplet, the reverse tracking method with an artificial neural network based on PIV data was performed. Using the method, the concentration distribution of solutes around a 2D droplet was estimated for actual flow data from PIV experiment.
Recently, many research works on the icebreaking vessels have been published as the possibility of passing Arctic routes has been increasing. The model ship test on the pack ice model in the ice basin is actively carried out as a way to investigate the performance of icebreaking vessels. In this test, the concentration of pack ice is important since it directly affects the performance. However, it is difficult to measure the concentration because not only the pack ice has uneven shape but also it keeps floating around in the basin. In this paper, an algorithm to identify the concentration of pack ice is introduced. From a digital image of pack ice obtained in the ice basin, the goal is to measure the area of pack ice using an image processing technique. Instead of the general global binarization that yields numerical errors in this problem, a local binarization technique, coupled with image subdivision based on the quadtree structure, is developed. The concentration results obtained by the developed algorithm are compared with the manually measured data to prove its accuracy.
We developed a high-throughput microscopy (HTM) method which enabled us to replace a conventional phase contrast microscopy (PCM) method that has been used as a standard analytical method for airborne asbestos. We could obtain the concentration of airborne asbestos fibers under detection limit by automated image processing and analysis using HTM method. Here we propose an improved image processing algorithm with variable parameters to enhance the accuracy of the HTM analysis. Since the variable parameters that compensate the difference of the brightness are applied to the individual images in our new image processing method, it is possible to enhance the accuracy of the automatic image analysis method for sample slides with low asbestos concentration that caused errors in binary image processing. We demonstrated that enumeration of fibers by improved image processing algorithm remarkably enhanced the accuracy of HTM analysis in comparison with PCM. The improved HTM method can be a potential alternative to conventional PCM.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.