• Title/Summary/Keyword: concentration distributions

Search Result 680, Processing Time 0.028 seconds

Effect of Oxygen Enriched Air on the Combustion of a Turbulent Diffusion Flat Flame (산소부화공기가 난류 확산 평면화염의 연소에 미치는 영향)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • Combustion using oxygen enriched air is an energy saving technology that can increase thermal efficiency by the improvement of burning rate and by the high temperature flame. Flame figures, OH radical intensities, temperature distributions and emission concentrations were measured according to oxygen enriched concentration and swirl number in a turbulent diffusion flat flame. It appeared that flame figure became flat and NO concentration decreased with increase of swirl number, and that the flame temperature increased high with increase of oxygen enriched concentration. In particular, it was most significant between oxygen concentration $40{\sim}60%$.

  • PDF

The hydrocarbon concentration distribution in the contaminated site using geospatial analysis

  • Lee, Ju-Young;Yang, Jung-Seok;Choi, Jae-Young;Krishinamurshy, Ganeshi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.909-910
    • /
    • 2007
  • The volatile organic compounds exposure is governed by the source distance and dispersion of the pollutant into air and groundwater. The purpose of this study was to validate suggested models for the prediction of concentration distributions. The study design was organized into different methods to simulate industry site. The distribution models generally showed a fair agreement with measured data. For graphical representation of concentration of volatile hydrocarbon, it has to obtain a continuous representation of the contamination of the site. Therefore, the used interpolative methods examined for this project are the IDW(inverse Distance Weighting) and kriging method. In the results, in summary, all two different methods can be used to quantify exposures at a particular source area, and thus provide, a solid foundation for making risk-based decisions. All the calculations can be performed using Excel's built-in functions, and the capabilities of geospatial analysis allow the results to be displayed visually. However, anyone who uses these methods should understand all of the assumptions and limitation.

  • PDF

Numerical Prediction of Smoke Concentration in a Compartment Fire by Using the Modified Volumetric Heat Source Model (수정된 체적열원모델을 이용한 실내 화재의 연기농도 예측)

  • Kim Sung-Chan;Lee Seong-Hyuk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.344-350
    • /
    • 2006
  • The present study investigates the characteristics of fire-driven heat flows and gas concentration in a compartment fire by using the modified VHS model (MVHS). The main idea of this model is to add some source terms for combustion products and oxygen consumption to the original VHS model for providing more accurate and useful information on gas concentration distributions as well as thermal fields. It is found that the present MVHS model shows fairly good agreement with the experimental data and the eddy breakup combustion model. The tilting angle of fire plume calculated by MVHS is larger than that of EBU model because the fire source of VHS is affected by ventilating flow less than EBU. However, this discrepancy is apparently reduced in the downstream region of fire source.

Shooting method applied to porous rotating disk: Darcy-Forchheimer flow of nanofluid

  • Muzamal Hussain;Humaira Sharif;Mohamed A. Khadimallah;Abir Mouldi;Hassen Loukil;Mohamed R. Ali;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.14 no.3
    • /
    • pp.295-302
    • /
    • 2023
  • The characteristics of motile microorganism and three dimensional Darcy-Forchheimer nanofluid flow by a porous rotatable disk with heat generation/absorption is reported. Thermophoretic and Brownian motion aspects are included by utilizing Buongiorno model. Moreover, slip conditions are considered on velocity, thermal, concentration and microorganism. Shooting procedure is implemented to find the numerical results of physical quantities are evaluated parametrically. The different physical parameters like heat sink/source parameter, thermal, Brownian number, thermophoresis parameter, concentration, Peclet number, bioconvected Lewis number, microorganism on concentration and density of motile microorganism distributions is considered. Graphs of concentration and microorganism are plotted to examine the influence of distinct prominent flow parameters.

Cloud Generation Using a Huge Vertical Mine

  • Ma, Chang-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E2
    • /
    • pp.78-88
    • /
    • 2006
  • In order to study the characteristics of cloud, a real-scale experiment for cloud generation was carried out using an extinct vertical mine (430 m height) located in the northeastern Honshu, Japan. The dry particles generated from the three-step concentrations of NaCl solutions were used for cloud generation. The number size distributions of initial dry particles and cloud droplets were monitored by Scanning Mobility Particle Sizer (SMPS) and Forward Scattering Spectrometer Probe (FSSP) at bottom and upper sites of pit, respectively. The polymeric water absorbent film (PWAF) method was employed to measure liquid water content ($W_L$) as a function of droplet size. Moreover the chemical properties of individual droplet replicas were determined by micro-PIXE. The CCN number concentration shows the lognormal form in dependence of the particle size, while the number size distributions of droplets are bimodal showing the peaks around $9{\mu}m$ and $20{\mu}m$ for every case. In comparison to background mineral particles, right shifting of size distribution line for NaCl particles was occurred. When NaCl solutions with three-step different concentrations were neulized, $W_L$ shows the strong droplet size dependence. It varied from $10.0mg\;m^{-3}$ up to $13.6mg\;m^{-3}$ with average $11.6mg\;m^{-3}$. A good relationship between $W_L$ and cloud droplet number concentration was obtained. Both chemical inhomogeneities (mixed components with mineral and C1) and homogeneities (only mineral components or C1) in individual droplet replicas were obviously observed from micro-PIXE elemental images.

The effect of physicochemical factors on the coagulation process (응집에 영향을 미치는 물리-화학 인자)

  • Kim, Sung-Goo;Ryu, Jae-Ick;Ryou, Dong-Choon;Kim, Jeong-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.81-87
    • /
    • 1997
  • Coagulation is very important process in water works. The subsequent processes are directly affected by this process. Many factors such as turbidity, alkalinity, pH, hardness, total organic carbon(TOC), velocity gradient and flocculation time effect on coagulation process. Among these factors, specially TOC is being concerned target substance to be removed due to trihalomenthanes(THMs) precursor and alkalinity is being one of the major parameter for removing TOC. We have researched the consumption of coagulant with TOC alkalinity concentration of water and removal efficiency of residual TOC and turbidity with alkalinity. Furthermore we have investigated particle size distributions with velocity gradient and alkalinity. The consumption of coagulant was proportionally increased to TOC and alkalinity concentration and the removal of TOC in Nakdong river water was very difficult more than 150 mg/l in alkalinity but large morecular weight organic such as humic acid could be removed easily. Coagulation of low alkalinity water was more rapidly occured than of high alkalinity water by analyzing the particle size distributions. High alkalinity water needed higher mixing energy for a good coagulation within limited flocculation time.

  • PDF

Assessment of Long-Range Transport of Atmospheric Pollutants using a Trajectory Model with the puff Concept (퍼프 유적선모델에 의한 대기오염물질의 장거리수송량의 평가)

  • 정관영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.167-177
    • /
    • 1996
  • To investigate the source-receptor relationships aerosol model has been used to simulate the distribution behavior of the yellow sand. Data for meteorological fields were obtained by Meso-scale Analysis and Prediction Model System/Seoul National University (MAPMS/SNU) for five days (10-14 April 1988). To obtain the distributions of concentration of yellow sand,the aerosol model has been modified to allow quantifications of relative concentration distributions of yellow sand. Source regions of yellow sand were delineated by soil maps of China and emission rate as a function of wind stress(Westphal et al., 1987). Using 3-dimensional wind fields the backward trajectories from 3 receptor grids at the layer of .sigma. =0.95, 0.9, 0.85, 0.8 were calculated. In order to facilitate quantitative assessment of source-receptor relationships, it was assumed that the perturbations in along-trajectory and cross-trajectory proceed linearly with time, in accord with Gaussian distribution characteristics. On the basis of this assumption, the probability fields were calculated from every grid point with source strength 1. Using these probability fields and emission retes, the potential contributions of upstream sources along the trajectories were estimated. The results of this study indicate that the application of trajectory modeling is useful in investigating the quantitative relationship between source and receptor regions.

  • PDF

A Case Study of Ionic Components in the Size-resolved Ambient Particles Collected Near the Volcanic Crater of Sakurajima, Japan

  • Ma, Chang-Jin;Kim, Ki-Hyun;Kang, Gong-Unn
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.72-79
    • /
    • 2010
  • In this study, the ionic composition of volcanogenically derived particles and their temporal and spatial distributions have been investigated to evaluate the impact of the volcanic eruption on the local ecosystem and residents. To this end, an intensive field study was conducted to measure the size-segregated particulate matters at the east part of Sakurajima in Japan. Fractionated sampling of particles into > $PM_{10}$, $PM_{10-2.5}$, and $PM_{2.5}$ was made by a multi nozzle cascade impactor (MCI). The concentration of various ions present in the size-resolved particles was determined by Ion chromatography. The time dependent 3-dimensional Volcanic Ash Forecast Transport And Dispersion (VAFTAD) model developed by the NOAA Air Resources Laboratory (ARL) indicated that the sampling site of this work was affected by the volcanic aerosol particles plume. The temporal distributions of sulfate and $PM_{2.5}$ during the field campaign were significantly variable with important contributions to particle mass concentration. The chlorine loss, suspected to be caused by acidic components of volcanic gases, occurred predominantly in fine particles smaller than $10\;{\mu}m$.

Characteristics of Probability Distribution of BOD Concentration in Anseong Stream Watershed (안성천 유역의 BOD농도 확률분포 특성)

  • Kim, Kyung Sub;Ahn, Taejin
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.425-431
    • /
    • 2009
  • It is very important to know the probability distribution of water-quality constituents for water-quality control and management of rivers and reservoirs effectively. The probability distribution of BOD in Anseong Stream was analyzed in this paper using Kolmogorov-Smirnov test which is widely used goodness-of-fit method. It was known that the distribution of BOD in Anseong Stream is closer to Log-normal, Gamma and Weibull distributions than Normal distribution. Normal distribution can be partially applied depending on significance level, but Log-normal, Gamma and Weibull distributions can be used in any significance level. Also the estimated Log-normal distribution of BOD at Jinwi3 station was to be compared with the measured in 2001, 2002 and 2003 years. It was revealed that the estimated probability distribution of BOD at Jinwi3 follows a theoretical distribution very well. The applicable probability distribution of BOD can be used to explain more rigorously and scientifically the achievement or violation of target concentration in TMDL(Total Maximum Daily Load).

Preparation and Characteristics of Polyethersulfone Microfiltration Membranes (폴리에테르술폰 정밀여과막의 제조 및 특성 연구)

  • Kim, No-Won
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.329-337
    • /
    • 2007
  • This is the research about a new method to make the internal separation layer with smallest pore size in polyethersulfone (PES) membrane by adding p-toluenesulfonic acid (TSA) and polyvinylpyrolidone (PVP) to polymeric PES solution. The preparation and morphological characterization of PES sheet membranes containing PVP as a hydrophilic swelling material and TSA as a demixing material were performed. As a result by microflow porometery, the PVP and TSA added PES membranes showed good permeabilities and narrow pore size distributions, comparable to those of the commercial membranes. The concentration of PVP affected the PES characteristics on air permeability and surface structure. The concentration of TSA influenced on pore size distribution but do not affect air permeability. The surface images of FE-SEM shows similar pore size when TSA added or not. However, the cross-section images of FE-SEM show that the TSA added PES membranes have a increase of internal layer thickness with smallest pore size.