• Title/Summary/Keyword: concentrated plasticity

Search Result 37, Processing Time 0.019 seconds

FEM Analysis on Deformation Inhomogeneities Developed in Aluminum Sheets During Continuous Confined Strip Shearing (알루미늄 판재구속전단가공에서 형성되는 불균일 변형의 유한요소해석)

  • 최호준;이강노;황병복;허무영
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.43-48
    • /
    • 2003
  • The strain state during the continuous confined strip shearing (CCSS) based on ECAP was tackled by means of a two-dimensional FEM analysis. The deformation of AA 1100 sheet in the CCSS apparatus was composed of three distinct processes of rolling, bending and shearing. The pronounced difference in the friction conditions on the upper and lower roll surfaces led to the different variation of the strain component ${epsilon}_13$ throughout the thickness of the aluminum sheet. Strain accompanying bending was negligible because of a large radius of curvature. The shear deformation was concentrated at the corner of the CCSSchannel where the abrupt change in the direction of material flow occurred. The process variables involving the CCSS-die design and frictions between tools and strip influenced the evolution of shear strains during CCSS.

Inelastic lateral-distortional buckling of continuously restrained continuous beams

  • Lee, Dong-Sik
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.305-326
    • /
    • 2005
  • The inelastic buckling behaviour of continuously restrained two and three-span continuous beams subjected to concentrated loads and uniformly distributed loads are studied in this paper. The restraint type considered in this paper is fully restrained against translation and elastic twist applied at the top flange. These types of restraints are most likely experienced in industrial structures, for example steel-concrete composite beams and half through girders. The buckling analysis of continuous beam consists of two parts, firstly the moment and shear distribution along the member are determined by employing force method and the information is then used for an out-of-plane buckling analysis. The finite element method is incorporated with so-called simplified and the polynomial pattern of residual stress. Owing to the inelastic response of the steel, both the in-plane and out-of-plane analysis, which is treated as being uncoupled, extend into the nonlinear range. This paper presents the results of inelastic lateral-torsional and lateral-distortional buckling load and finally conclusions are drawn regarding the web distortion.

Multi-Point Sheet Forming Using Elastomer (탄소중합체를 이용한 다점 박판 성형)

  • 박종우
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.129-136
    • /
    • 2004
  • Recently, instead of a matched die forming method requiring a high cost and long delivery term, a multi-point dieless forming method using a pair of matrix type punch array as flexible dies has been developed. Since the conventional multi-point dieless forming method has some disadvantages of difficulty in precise punch control and high-cost of equipment, a new concept of multi-point dieless forming method combined with an elasto-forming method has been suggested in this study. For optimal selection of elastomers, compression tests of rubbers, polyethylene and foams were carried out together with FEM analysis of the deformation behavior during sheet forming process using a rigid punch and elastomers. Compressive strain was concentrated on the upper central area of the elastomer under the punch, and the rubber exhibited higher concentration of the compressive strain than foams. Two-dimensional curved surface was formed successfully by the multi-point elasto-dieless forming method using an optimal combination of rubber and foam materials.

A Study on the Fabrication of Nano-Pattern Mold Using Anodic Aluminum Oxide Membrane (양극산화 알루미늄막을 이용한 나노패턴 성형용 금형제작에 대한 연구)

  • Oh, J.G.;Kim, J.S.;Kang, J.J.;Kim, J.D.;Yoon, K.H.;Hwang, C.J.
    • Transactions of Materials Processing
    • /
    • v.19 no.2
    • /
    • pp.73-78
    • /
    • 2010
  • Recently, many researches on the development of super-hydrophobic surface have been concentrated on the fabrication of nano-patterned products. Nano-patterned mold is a key to replicate nano-patterned products by mass production process such as injection molding and UV molding. The present paper proposes the new fabricating method of nano-patterned mold at low cost. The nano-patterned mold was fabricated by electroforming the anodic aluminum oxide membrane filled with UV curable resin in nano-hole by capillary phenomenon. As a result, the final mold with nano-patterns which have the holes with the diameter of 100~200 nm was fabricated. Furthermore, the UV-molded products with clear nano- patterns which have the pillars with the diameter of 100~200nm were achieved.

Design of Gate Locations, Molding Conditions, and Part Structure to Reduce the Warpage of Short-Fiber Reinforced Injection Molded Part (단섬유 보강 사출성형품의 휨 감소를 위한 게이트 위치, 성형 조건 및 제품 구조 설계)

  • Choi, D.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.443-448
    • /
    • 2008
  • Fiber reinforced injection molded parts are widely used in recent years because of their improved properties of materials such as specific stiffness, specific strength, and specific toughness. The demand for products with high precision is increasing and it is important to minimize the warpage of the products. The warpage of short-fiber reinforced product is caused by anisotropy induced by fiber orientation as well as the residual stresses induced during the molding process. In order to reduce the warpage of the part, it is important to achieve successful mold design, processing control, and part design. In the present study, the design of gating system, molding condition, and part structure were carried out and verified with numerical analysis using a commercial CAE code Moldflow. The numbers and locations of gates were iteratively determined, and the molding conditions which can decrease the warpage of the part were investigated. Finally, slight structural modification of the part was conducted to reduce the locally concentrated warpage.

Collapse behaviour in reciprocal frame structures

  • Garavaglia, Elsa;Pizzigoni, Attilio;Sgambi, Luca;Basso, Noemi
    • Structural Engineering and Mechanics
    • /
    • v.46 no.4
    • /
    • pp.533-547
    • /
    • 2013
  • "Reciprocal Frame" refers to a self-supporting grid structure used both for floor and roof. Using Finite Element Methods for non-linear solid mechanics and frictional-contact, this paper intends to analytically and numerically investigate the collapse behaviour of a reciprocal frame structure made of fibre-reinforced concrete. Considering a simple 3-beam structure, it has been investigated using a solid finite element model. Once defined the collapse behaviour of the simple structure, the analysis has been generalized using a concentrated plasticity finite element method. Results provided will be useful for studying generic reciprocal frame structures with several beams.

Experiments and numerical analyses for composite RC-EPS slabs

  • Skarzynski, L.;Marzec, I.;Tejchman, J.
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.689-704
    • /
    • 2017
  • The paper presents experimental and numerical investigations of prefabricated composite structural building reinforced concrete slabs with the insulating material for a residential building construction. The building slabs were composed of concrete and expanded polystyrene. In experiments, the slabs in the full-scale 1:1 were subjected to vertical concentrated loads and failed along a diagonal shear crack. The experiments were numerically evaluated using the finite element method based on two different constitutive continuum models for concrete. First, an elasto-plastic model with the Drucker-Prager criterion defined in compression and with the Rankine criterion defined in tension was used. Second, a coupled elasto-plastic-damage formulation based on the strain equivalence hypothesis was used. In order to describe strain localization in concrete, both models were enhanced in the softening regime by a characteristic length of micro-structure by means of a non-local theory. Attention was paid to the formation of critical diagonal shear crack which was a failure precursor.

Simplified analytical model for flexural response of external R.C. frames with smooth rebars

  • Campione, Giuseppe;Cannella, Francesco;Cavaleri, Liborio;Monaco, Alessia
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.531-542
    • /
    • 2018
  • In this paper an analytical model in a closed form able to reproduce the monotonic flexural response of external RC beam-column joints with smooth rebars is presented. The column is subjected to a constant vertical load and the beam to a monotonically increasing lateral force applied at the tip. The model is based on the flexural behavior of the beam and the column determined adopting a concentrated plasticity hinge model including slippage of the main reinforcing bars of the beam. A simplified bilinear moment-axial force domain is assumed to derive the ultimate moment associated with the design axial force. For the joint, a simple truss model is adopted to predict shear strength and panel distortion. Experimental data recently given in the literature referring to the load-deflection response of external RC joints with smooth rebars are utilized to validate the model, showing good agreement. Finally, the proposed model can be considered a useful instrument for preliminary static verification of existing external RC beam-column joints with smooth rebars for both strength and ductility verification.

Forming Characteristics of the Forward and Backward Tube Extrusion Using Pipe (중공축 소재를 이용한 전후방 복합압출의 성형 특성)

  • Kim S. H.;Lee H. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.772-778
    • /
    • 2005
  • This paper is concerned with the analysis of material flow characteristics of combined tube extrusion using pipe. The analysis in this paper concentrated on the evaluation of the design parameters for deformation patterns of tube forming, load characteristics, extruded length, and die pressure. The design factors such as punch nose radius, die corner radius, friction factor, and punch face angle are involved in the simulation. The combined tube extrusion is analyzed by using a commercial finite element code. This simulation makes use of pipe material and punch geometry on the basis of punch geometry recommended by International Cold Forging Group. Deformation patterns and its characteristics in combined forward and backward tube extrusion process were analyzed for forming loads with primary parameters, which are various punch nose radius relative to backward tube thickness. The results from the simulation show the flow modes of pipe workpiece and the die pressure at the contact surface between pipe workpiece and punch. The specific backward tube thickness and punch nose radius have an effect on extruded length in combined extrusion. The combined one step forward and backward extrusion is compared with the two step extrusion fer forming load and die pressure.

A Study on the Roll Gap Set-up to Compensate Thickness Variation at Top-end in Plate Rolling (후판 압연시 선단부 두께편차 보상을 위한 롤갭 설정에 관한 연구)

  • Yim, H.S.;Joo, B.D.;Lee, G.Y.;Seo, J.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.290-295
    • /
    • 2009
  • The roll gap set-up in the finishing mill is one of the most important technologies in the hot plate rolling process. As the target thickness can be obtained by the correct set-up of the roll gap, improving the roll gap set-up technology is very critical for plate thickness accuracy. The main cause of thickness variation in hot plate mills is the non-uniform temperature distribution along the length of the slab. The objective of this study is to adjust the roll gap set-up for the thickness accuracy of plate in hot rolling process considering top-end temperature drop. Therefore this study has concentrated on determining the correct amounts of thickness variation according to top-end temperature drop and roll gap to compensate thickness variation. The control method of roll gap set-up which can improve the thickness accuracy was proposed. The off-line simulation of compensated roll gap significantly decreases top-end thickness variation.