• 제목/요약/키워드: concentrated load

검색결과 531건 처리시간 0.026초

집중하중을 받는 일방향 보강 섬유 금속 적층판의 손상 개시 모델링 (Modeling of Damage Initiation in Singly Oriented Ply Fiber-Metal Laminate under Concentrated Loading Conditions)

  • 남현욱;변현중;정성욱;한경섭
    • Composites Research
    • /
    • 제14권3호
    • /
    • pp.42-50
    • /
    • 2001
  • 본 연구에서는 집중하중을 받는 일방향 보강 섬유 금속 적층판의 손상 개시 모델을 연구하였다. 기존의 복합재료 적층판의 해석에 사용하는 일타 전단변형이론을 수정하여 섬유 금속 적층판의 하중 변위 관계를 구하였고, 유한 요소 해석을 통하여 응력을 계산한 다음 Tsai-Hill failure criterion과 Miser yield criterion을 사용하여 섬유층과 금속판의 파괴 지수를 계산하는 방법으로 섬유 금속 적층판의 손상 개시를 모델링하였다. 단순 인장과 원통형 굽힘 하중에서의 적층 각도에 따른 섬유 금속 적층판의 파괴 지수 분포를 통하여 해석의 타당성을 검증하였으며, 이를 바탕으로 집중하중을 받는 경우 섬유 방향에 따른 파괴 지수를 계산하였다. 계산된 파괴 지수를 손상 개시 하중과 비교하기 위하여 압입 시험을 수행하였다. 압입 시험은 섬유 방향의 영향을 보기 위하여 양단 고정인 경계 조건에서 수행하였다. 손상 개시 하중은 압입 선도의 앞 부분을 Hertz식을 이용하여 회귀 분석한 곡선이 실제 하중 곡선과 달라지는 점으로부터 결정하였다. 다양한 섬유 방향에 따른 압입 시험을 수행하였으며 각각의 손상 개시 하중을 파괴 지수와 비교하였다.

  • PDF

Efficient influence of cross section shape on the mechanical and economic properties of concrete canvas and CFRP reinforced columns management using metaheuristic optimization algorithms

  • Ge, Genwang;Liu, Yingzi;Al-Tamimi, Haneen M.;Pourrostam, Towhid;Zhang, Xian;Ali, H. Elhosiny;Jan, Amin;Salameh, Anas A.
    • Computers and Concrete
    • /
    • 제29권 6호
    • /
    • pp.375-391
    • /
    • 2022
  • This paper examined the impact of the cross-sectional structure on the structural results under different loading conditions of reinforced concrete (RC) members' management limited in Carbon Fiber Reinforced Polymers (CFRP). The mechanical properties of CFRC was investigated, then, totally 32 samples were examined. Test parameters included the cross-sectional shape as square, rectangular and circular with two various aspect rates and loading statues. The loading involved concentrated loading, eccentric loading with a ratio of 0.46 to 0.6 and pure bending. The results of the test revealed that the CFRP increased ductility and load during concentrated processing. A cross sectional shape from 23 to 44 percent was increased in load capacity and from 250 to 350 percent increase in axial deformation in rectangular and circular sections respectively, affecting greatly the accomplishment of load capacity and ductility of the concentrated members. Two Artificial Intelligence Models as Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) were used to estimating the tensile and flexural strength of specimen. On the basis of the performance from RMSE and RSQR, C-Shape CFRC was greater tensile and flexural strength than any other FRP composite design. Because of the mechanical anchorage into the matrix, C-shaped CFRCC was noted to have greater fiber-matrix interfacial adhesive strength. However, with the increase of the aspect ratio and fiber volume fraction, the compressive strength of CFRCC was reduced. This possibly was due to the fact that during the blending of each fiber, the volume of air input was increased. In addition, by adding silica fumed to composites, the tensile and flexural strength of CFRCC is greatly improved.

과전류 부하에서 5상 농형 유도전동기의 정수 특성 (Parameters Estimation Characteristics of Five-Phase Squirrel-Cage Induction Motor within Over Current Load)

  • 김민회
    • 조명전기설비학회논문지
    • /
    • 제29권7호
    • /
    • pp.38-46
    • /
    • 2015
  • This paper propose a variable parameter estimations for variable over current load of five-phase squirrel-cage induction motor(IM) to servo control system. In order to high performance control of AC motor using a field oriented control(FOC) and direct torque control(DTC) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, torque command of current components, rotor position, speed estimation, and so on. We are suggest a analyzed estimation results of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental within variable over current load at rated input frequency. There are results of stator winding measurement, no-load test, locked-rotor test, variable over current load test, and estimated parameters of equivalent circuits using manufactured experimental apparatus by IEEE Standard Test Procedure for Polyphase Induction Motors and Generators 112-2004.

주차장 구조물 슬래브의 차량하중영향에 관한 연구 (Vehicle Load Effects on Slab of Parking Garage Structure)

  • 곽효경;송종영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.131-138
    • /
    • 1997
  • The equivalent vehicle load factors which can consider the concentrated wheel load effect in slab design of parking garage structure are proposed. Based on the standard vehicle with total weight of 2.4 ton which is designed through the investigation of small to medium vehicle produced in Korea and the review of numerous foreign design codes for parking garage structure, the effects of moving vehicle loads on slab are analyzed using the finite element method. Besides. the relationships between the equivalent load factors and the sectional dimensions are established by regression analysis. The calculation of design forces can be easily accomplished without taking sophisticated numerical analysis for the moving vehicle load as the results obtained to the distributed load are multiplied by the proposed load factors in practice.

  • PDF

Thermomechanical interactions in a transversely isotropic thermoelastic media with diffusion due to inclined load

  • Parveen Lata;Heena
    • Structural Engineering and Mechanics
    • /
    • 제90권3호
    • /
    • pp.263-272
    • /
    • 2024
  • This research deals with the study of two-dimensional deformation in transversely isotropic thermoelastic diffusion medium. This investigation integrates the effect of diffusion and thermal effects in transversely isotropic thermoelastic solids under inclined load. Inclined load is taken as linear combination of normal load and tangential load. Laplace and Fourier transformation techniques are employed to transform the physical domain and then transformed solutions are inverted with the aid of numerical inversion techniques. Concentrated and distributed load are considered to exemplify its utility. Graphical representation of variation in displacement, stresses, temperature and concentration distribution with distance is depicted by taking inclination at different angles. Some particular cases are studied.

편측저작시 하악골 과두의 응력분포에 관한 삼차원 유한요소분석적 연군 (THREE DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF THE MANDIBULAR CONDYLE DURING UNILATERAL CLENCHING)

  • 남도현;허성주;김광남
    • 대한치과보철학회지
    • /
    • 제35권3호
    • /
    • pp.517-534
    • /
    • 1997
  • It has been held that excessive mechanical forces to the osseous and soft tissues of the TMJ result in joint dysfunction. Understanding the stress pattern on TMJ is very important in TMJ research. But, it is very difficult to measure directly the biomechanical stress distribution in the TMJ when the mandible is loaded. Therefore, stress distribution in the TMJ during functional movement was studied through animal experiment or mathematical model. It was observed and compared the stress distribution occuring in the working and balancing condyle when lower right canine, lower right first molar and lower right second molar were clenched by the three dimensional finite element analysis. Also, stress distribution in the working and balancing condyles were observed and compared when $20^{\circ}$ forward and buccal bite forces were applied to the first molar. The results were as follows : 1. Stress distribution in the condyles during unilateral clenching of the first molar, second molar, canine showed no difference. In the working condyle, tensile force was concentrated on the lateral aspect of the condylar articular surface and condylar neck. And compressive force was concentrated on the anteromedial and lateral aspect of condyle. In the balancing condyle, tensile and compressive forces were concentrated on the lateral aspect of the condylar articular surface and stress transmission to the temporal bone was not observed. 2. When lateral forces were applied to the first molar, tensile forces were concentrated on the medial aspect of the condylar neck and condylar posterior surface in working and balancing condyle. Compressive force was concentrated on the anteromedial and lateral surface of the condyle and stress transmission to the temporal bone was not observed. 3. During unilateral clenching, stress in the working condyle decreased as the occlusal load moved posteriorly while the stress in the balancing condyle increased. when lateral force was applied to first molar, the incremental amount of stress was greater than vertical load. 4. During unilateral clenching, the average balancing/working condyle stress ratio was 2.52. There was a greater concentration of stress in the balancing condyle. The ratio increased as the occlusal load moved posteriorly and decreased considerably when lateral forces were applied to the first molar.

  • PDF

집중 하중을 받는 일방향 보강 섬유 금속 적층판의 손상 개시 모델링 (Modeling of damage initiation in singly oriented ply Fiber Metal Laminate under concentrated loading conditions)

  • 남현욱;정성욱;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.65-68
    • /
    • 2001
  • In this research, damage initiation in singly oriented ply (SOP) FML under concentrated loading conditions was studied. The finite element method (FEM) base on the first order shear deformation theory is used for the analysis of fiber orientation effect on FML under concentrated loading conditions. The failure indices were calculated for the variation of fiber orientation and the results were compared with indentation experiments. The failure indices were well matched with damage initiation of SOP FML. Indentation results shows that the crack initiation of SOP FML is determined by stiffness induced by fiber orientation and tile penetration load of SOP FML are influenced by the deformation tendency and boundary conditions.

  • PDF

집중질량 크기 변화해 따른 변단면판의 동적안정해석 (Dynamic Stability Analysis of Tapered Thick Plate on varying Concentrated Mass)

  • 김일중;오숙경
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.127-132
    • /
    • 2007
  • This paper has the object of investigating dynamic stability of opening thick plates on Pasternak foundation by means of finite element method and providing Kinematic design data for mat of building structures. Finite element analysis of Tapered Thick plate is done by use of rectangular finite element with 8-nodes. In order to analysis plate which is supported on Pasternak foundation. the Winkler foundation parameter is varied with $10^2$, $10^3$ and the shear foundation parameter is 5, 10. The ratio of force to critical load is applied as 0.4, 0.6, respectively. This paper analyzed varying Tapered Ratio and Concentrated Mass.

  • PDF

A Study on New PV Tracking System Including Load Dispersion

  • Lee, Sang-Hun;Song, Hyun-Jig;Park, Chan-Gyu;Song, Sung-Geon
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권4호
    • /
    • pp.472-480
    • /
    • 2014
  • The In solar power system, the height and azimuth of the sun are important parameters which control generated power magnitude. The tracking method that controls the daily generation magnitude according to latitude and longitude using the two axles is often used in the existing sunlight tracking system today. In this two-axle PV track control system, the self-load is concentrated on one FRAME. It is influenced of the regular load, snow load and the wind load, etc. It is difficult to set up the system in the conventional building. This research is a development about the small-scale economy track device of independent load-dispersing solar generation system. The position tracking algorithm is through new coordinates transformation calculating the height and azimuth of the sun.

Random vibration of multispan Timoshenko frames due to a moving load

  • Wang, Rong-Tyai;Lin, Jin-Sheng
    • Structural Engineering and Mechanics
    • /
    • 제6권6호
    • /
    • pp.673-691
    • /
    • 1998
  • In this paper, an analytic method to examine the random vibration of multispan Timoshenko frames due to a concentrated load traversing at a constant velocity is presented. A load's magnitude is a stationary process in time with a constant mean value and a variance. Two types of variances of this load are considered: white noise process and cosine process. The effects of both velocity and statistical characteristics of load and span number of the frame on both the mean value and variance of deflection and moment of the structure are investigated. Results obtained from a multispan Timoshenko frame are compared with those of a multispan Bernoulli-Euler frame.