• Title/Summary/Keyword: concentrated load

Search Result 538, Processing Time 0.033 seconds

Performance Analysis of an Adaptive Sector System for Terrestrial Station in Ad-hoc Communication System Between Vessels (선박 간 ad-hoc 통신 시스템에서 육상국용 적응 섹터 시스템의 성능 분석)

  • Lee, Hyung-beom;Kim, Seung-geun;Kim, Jun-ho;Kim, Min-sang;Ko, Hak-lim;Im, Tae-ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.2
    • /
    • pp.263-268
    • /
    • 2016
  • A rapid increase of data amount, used in ship-to-ship transmission of safety and logistics information, ships in the inland sea have trouble transmitting real-time information transmission due to an increase in traffic load caused by data transmitted by land station and offshore ships. In this study, therefore, communication is carried out by adaptively controlling the detailed beam width based on the distribution of offshore ships in land station durable in marine environment. Then after the adaptive sector system enabling real-time communication support between ships concentrated in an inland sea and land station is applied, the performance verification is conducted based on the respective Call Blocking Rates of an omnidirectional antenna, fisted sector system, and adaptive sector system. The performance verification result shows that adaptive sector system has better performance than the fixed sector system as the density of ship, q value, increases, and that the smaller the beam width is, the better performance of adaptive sector system will be.

FINITE ELEMENT STRESS ANALYSIS OF A CLASS II COMPOSITE RESIN RESTORATION (2급 와동의 복합레진 충전에 관한 유한요소법적 응력분석)

  • Song, Bo-Kyung;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.627-643
    • /
    • 1995
  • The resistance to fracture of the restored tooth may be influenced by many factors, among these are the cavity dimension and the physical properties of the restorative material. The placement of direct composite resin restorations has generally been found to have a strengthening effect on the prepared teeth. It is the purpose of this investigation to study the relationship between the cavity isthmus and the fracture resistance of a tooth in composite resin restorations. In this study, MO cavity was prepared on the maxillary left first molar and then filled with composite resin. Three dimentional model with 3049 nodes and 2450 8-node blick elements was made by the serial photographic method and isthmus (1/4, 1/3, 1/2 and 2/3 of intercusplal distance between mesiobuccal cusp tip and mesiolingual cusp tip) was varied. Two types of model(B and R model) were developed. B model was assumed perfect bonding between the restoration and cavity wall and R model was left unfilled. A load of 1500N was applied vertically on the node from the lingual slope of the mesiobuccal cusp. The results were as follows : 1. There was a significant decrease of stress resulting in increase of fracture resistance in B model when compared with R model. 2. When it comes to stress distribution, the stress was concentrated in the facio-gingival line angle and the buccal side of the distal margin of the cavity in both Band R model. 3. With the increase of the isthmus width, the stress decreased in the area of the facio-gingival line angle, and increased in the area of facio-gingival line angle as well as the buccal side of the distal margin of the cavity in B model. In R model, the stress increased both in the area of facio-gingival line angle and the buccal side of the distal margin of the cavity, therefore the possibility of crack increased. 4. As the width of cavity increased, in B model, the direction of crack moved from horizontal to vertical on the facio-gingival line angle and the facio-pulpal line angle. In R model, the direction of the crack was horizontal on the facio-gingival line angle and moved from horizontal to the $45^{\circ}$ direction on the facio-pulpal line angle.

  • PDF

Design and Implementation of the Extended SLDS Supporting SDP Master Replication (SDP Master 이중화를 지원하는 확장 SLDS 설계 및 구현)

  • Shin, In-Su;Kang, Hong-Koo;Lee, Ki-Young;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.3
    • /
    • pp.79-91
    • /
    • 2008
  • Recently, with highly Interest In Location-Based Service(LBS) utilizing location data of moving objects, the GALIS(Gracefully Aging Location Information System) which is a cluster-based distributed computing architecture was proposed as a more efficient location management system of moving objects. In the SLDS(Short-term location Data Subsystem) which Is a subsystem of the GALIS, since the SDP(Short-term Data Processor) Master transmits current location data and queries to every SDP Worker, the SDP Master reassembles and sends query results produced by SDP Workers to the client. However, the services are suspended during the SDP Master under failure and the response time to the client is increased if the load is concentrated on the SDP Master. Therefore, in this paper, the extended SLDS was designed and implemented to solve these problems. Though one SDP Master is under failure, the other can provide the services continually, and so the extended SLDS can guarantee the high reliability of the SLDS. The extended SLDS also can reduce the response time to the client by enabling two SDP Masters to perform the distributed query processing. Finally, we proved high reliability and high availability of the extended SLDS by implementing the current location data storage, query processing, and failure takeover scenarios. We also verified that the extended SLDS is more efficient than the original SLDS through the query processing performance evaluation.

  • PDF

Distribution and Pollution Status of Organic Matter and Heavy Metals in Surface Sediment Around Goseong Bay, a Shellfish Farming Area, Korea (패류양식해역인 고성만 주변 표층 퇴적물의 유기물과 중금속 분포 및 오염현황)

  • Lee, Garam;Hwang, Dong-Woon;Hwang, Hyunjin;Park, Jung-Hyun;Kim, Hyung-Chul;Kwon, Jung-No
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.699-709
    • /
    • 2017
  • We measured the grain size, total organic carbon (TOC), total nitrogen (TN), and heavy metals (As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, and Zn) in order to understand the spatial distribution and pollution level of organic matter and metals in surface sediment around Goseong Bay, a shellfish farming area, Korea. The surface sediments were composed of finer sediments such as mud and clay. The concentration of TOC, TN, and heavy metals were much higher in the innermost bay than in the mouth and outside of bay. The spatial distribution of organic matter and heavy metals and C/N ratio (5-10) in sediment showed that the organic matter and heavy metals in sediment of the study region were significantly influenced by oceanic origin organic matter and anthropogenic sources, respectively. Based on the results of four assessment techniques (sediment quality guideline, geoaccumulation index, pollution load index, ecological risk index), the sediments around the Goseong Bay were a little polluted for heavy metals and the high metal concentrations in the northern region of bay could adverse impact on benthic organisms in sediment. Thus, the systematic management plan for the improvement of water and sediment environment and the concentrated monitoring of pollutants for sustainable aquaculture and seafood safety around Goseong Bay are necessary in the future.

Analysis of pillar stability according to reinforcement method for very near parallel tunnel (초근접 병렬터널 필라부 보강공법에 따른 안정성 분석)

  • Jo, Young-Seok;Kim, Yun-Hee;Hong, Ji-Yeon;Kim, Dong-Gyou;Kim, Bumjoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.2
    • /
    • pp.119-131
    • /
    • 2021
  • In general, the stress is concentrated on the pillar of very near parallel tunnel (VNPT), and the pillar has been reinforced by using steel-wires to maintain the stability of the tunnel. However, since the strength of the pillar decreases in the soil layer, the reinforcing pillar with the steel-wires is insufficient for tunnel stability. In this study, the laboratory tunnel experiment was conducted to examine the reinforcement effect for a new method, of which the pillar of VNPT is strengthened by using steel-pipes. As a result, against overburden stress, the bearing capacity of the steel-pipe reinforcement was 22% greater than that of the steel-wire reinforcement. In using the Particle Image Velocimetry method, the analysis shows that the steel-pipe reinforcement forms a more favorable condition of which uniformly the overburden load acts on the VNPT and the pillar than the steel-wire reinforcement. Based on the results, the steel-pipe reinforcement is expected to bring a more positive effect on tunnel stability than the steel-wire reinforcement.

Application of Effective Earthquake Force by the Boundary Reaction Method and a PML for Nonlinear Time-Domain Soil-Structure Interaction Analysis of a Standard Nuclear Power Plant Structure (원전구조물의 비선형 시간영역 SSI 해석을 위한 경계반력법에 의한 유효지진하중과 PML의 적용)

  • Lee, Hyeok Ju;Lim, Jae Sung;Moon, Il Hwan;Kim, Jae Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.25-35
    • /
    • 2023
  • Considering the non-linear behavior of structure and soil when evaluating a nuclear power plant's seismic safety under a beyond-design basis earthquake is essential. In order to obtain the nonlinear response of a nuclear power plant structure, a time-domain SSI analysis method that considers the nonlinearity of soil and structure and the nonlinear Soil-Structure Interaction (SSI) effect is necessary. The Boundary Reaction Method (BRM) is a time-domain SSI analysis method. The BRM can be applied effectively with a Perfectly Matched Layer (PML), which is an effective energy absorbing boundary condition. The BRM has a characteristic that the magnitude of the response in far-field soil increases as the boundary interface of the effective seismic load moves outward. In addition, the PML has poor absorption performance of low-frequency waves. For this reason, the accuracy of the low-frequency response may be degraded when analyzing the combination of the BRM and the PML. In this study, the accuracy of the analysis response was improved by adjusting the PML input parameters to improve this problem. The accuracy of the response was evaluated by using the analysis response using KIESSI-3D, a frequency domain SSI analysis program, as a reference solution. As a result of the analysis applying the optimal PML parameter, the average error rate of the acceleration response spectrum for 9 degrees of freedom of the structure was 3.40%, which was highly similar to the reference result. In addition, time-domain nonlinear SSI analysis was performed with the soil's nonlinearity to show this study's applicability. As a result of nonlinear SSI analysis, plastic deformation was concentrated in the soil around the foundation. The analysis results found that the analysis method combining BRM and PML can be effectively applied to the seismic response analysis of nuclear power plant structures.

Calculation of Crack Width of the Top Flange of PSC Box Girder Bridge Considering Restraint Drying Shrinkage (구속 건조수축을 고려한 PSC BOX 거더교 상부플랜지 균열폭 산정)

  • Young-Ho Ku;Sang-Mook Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.30-37
    • /
    • 2023
  • The PSCB girder bridge is a closed cross-section in which the top and bottom flanges and the web are integrated, and the structural characteristics are generally different from the bridges in which the girder and the floor plate are separated, so a maintenance plan that reflects the characteristics of the PSCB girder bridge is required. As a result of analyzing damage types by collecting detailed safety diagnosis reports of highway PSCB girder bridges, most of the deterioration and damage occurring during use is concentrated on the top flange. In particular, cracks in the bridge direction on the underside of the top flange occurred in about 70 % of the PSCB girder bridges to be analyzed, and these cracks were judged to be caused by indirect loads such as heat of hydration and drying shrinkage rather than structural cracks caused by external loads. In order to improve durability and reduce maintenance costs of PSCB girder bridges in use, it is necessary to control restraint drying shrinkage cracks from the design stage. Therefore, in this paper, the cracks caused by drying shrinkage under restraint, which is the main cause of cracks under the flanges of the top part of the PSCB girder bridge, were directly calculated using the Gilbert Model, and the influencing factors such as the amount of reinforcing bars, diameter and spacing of reinforcing bars were analyzed. As a result of the analysis, it was found that the crack width caused by restraint drying shrinkage exceeded the allowable crack width of 0.2 mm for reinforcing bars with a reinforcing bar ratio of 0.01 or less based on the H16 reinforcing bar and a reinforcing bar with a diameter greater than H19 based on the reinforcing bar ratio of 0.01. Finally, based on the results of the crack width review, a method for controlling the crack width of the top flange of the PSCB girder bridge was proposed.

Analysis of Principal Stress Distribution Difference of Tensile Plate with Partial Through-hole (부분 관통 구멍이 있는 인장판의 주응력 분포 차이 해석)

  • Park, Sang Hyun;Kim, Young Chul;Kim, Myung Soo;Baek, Tae Hyun
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.2
    • /
    • pp.437-444
    • /
    • 2017
  • Stress concentrations around discontinuities, such as a hole in cross section of a structural member, have great importance because the most materials failure around the region may be occurred. Stress on the point applied by concentrated load reaches much larger value than the average stress in structural member. In this paper, stress analysis was performed for the plate with a partial through-hole to find the difference of the principal stress distribution. The difference between maximum principal stress and minimum principal stress in photoelasticity is equal to the value obtained by multiplying the isochromatic fringe order by the fringe constant of the material divided by the distance through which the light passes, that is, the thickness of the specimen. Since the difference of principal stress is proportional to the photoelastic fringe order, the distribution of the principal stress difference by the finite element analysis can be compared with the photoelasticity experimental result. ANSYS Workbench, that is the finite element software, is used to compute the differences of principal stresses at the specific points on the measured lines. The computation values obtained by ANSYS are compared with the experimental measurements by photoelasticity, and two results are comparable to each other. In addition, the stress concentration factor is obtained using the stress distribution analyzed from the variation of hole depth. Stress concentration factor is increasing, as the depth of hole increase.

Analysis of Stability and Behavior of Slope with Solar Power Facilities Considering Seepage of Rainfall (태양광 발전시설이 설치된 사면의 강우시 침투를 고려한 안정성 및 거동 분석)

  • Yu, Jeong-Yeon;Lee, Dong-Gun;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.57-67
    • /
    • 2023
  • Slope failures during rainfall have been observed in mountainous areas of South Korea as a result of the presence of solar power facilities. The seepage behavior and pore pressure distribution differ from typical slopes due to the presence of impermeable solar panels, and the load imposed by the solar power structures also affects the slope behavior. This study aims to develop a method for evaluating the stability of slopes with solar power facilities and to analyze vulnerable points by considering the maximum slope displacement. To assess the slope stability and predict behavior while considering rainfall seepage, a combined seepage analysis and finite difference method numerical analysis were employed. For the selected site, various variables were assumed, including parameters related to the Soil Water Characteristic Curve, strength parameters that satisfy the Mohr-Coulomb failure criterion, soil properties, and topographic factors such as slope angle and bedrock depth. The factors with the most significant influence on the factor of safety (FOS) were identified. The presence of solar power facilities was found to affect the seepage distribution and FOS, resulting in a decreasing trend due to rainfall seepage. The maximum displacement points were concentrated near the upper (crest) and lower (toe) sections of the slope.

Automated Finite Element Analyses for Structural Integrated Systems (통합 구조 시스템의 유한요소해석 자동화)

  • Chongyul Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • An automated dynamic structural analysis module stands as a crucial element within a structural integrated mitigation system. This module must deliver prompt real-time responses to enable timely actions, such as evacuation or warnings, in response to the severity posed by the structural system. The finite element method, a widely adopted approximate structural analysis approach globally, owes its popularity in part to its user-friendly nature. However, the computational efficiency and accuracy of results depend on the user-provided finite element mesh, with the number of elements and their quality playing pivotal roles. This paper introduces a computationally efficient adaptive mesh generation scheme that optimally combines the h-method of node movement and the r-method of element division for mesh refinement. Adaptive mesh generation schemes automatically create finite element meshes, and in this case, representative strain values for a given mesh are employed for error estimates. When applied to dynamic problems analyzed in the time domain, meshes need to be modified at each time step, considering a few hundred or thousand steps. The algorithm's specifics are demonstrated through a standard cantilever beam example subjected to a concentrated load at the free end. Additionally, a portal frame example showcases the generation of various robust meshes. These examples illustrate the adaptive algorithm's capability to produce robust meshes, ensuring reasonable accuracy and efficient computing time. Moreover, the study highlights the potential for the scheme's effective application in complex structural dynamic problems, such as those subjected to seismic or erratic wind loads. It also emphasizes its suitability for general nonlinear analysis problems, establishing the versatility and reliability of the proposed adaptive mesh generation scheme.