• Title/Summary/Keyword: computer-simulation

Search Result 12,220, Processing Time 0.04 seconds

A Study on Estimating Optimal Tonnage of Coastal Cargo Vessels in Korea (우리나라 연안화물선의 적정선복량 추정에 관한 연구)

  • 이청환;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.13 no.1
    • /
    • pp.21-53
    • /
    • 1989
  • In the past twenty years, there has been a rapid increase in the volume of traffic in Korea due to the Korean great growth of the Korean economy. Since transformation provides an infrastructure vital to economic growth, it becomes more and more an integral part of the Korea economy. The importance of coastal shipping stands out in particular, not only because of the expansion limit on the road network, but also because of saturation in the capacity of rail transportation. In spite of this increase and its importance, coastal shipping is falling behind partly because it is givenless emphasis than ocean-going shipping and other inland transportation systems and partly because of overcompetition due to excessive ship tonnage. Therefore, estimating and planning optimum ship tonnage is the first take to develop Korean coastal shipping. This paper aims to estimate the optimum coastal ship tonnage by computer simulation and finally to draw up plans for the ship tonnage balance according to supply and demand. The estimation of the optimum ship tonnage is peformed by the method of Origin -Destimation and time series analysis. The result are as follows : (1) The optimum ship tonnage in 1987 was 358, 680 DWT, which is 54% of the current ship tonnage (481 ships, 662, 664DWT) that is equal to the optimum ship tonnage in 1998. this overcapacity result is in excessive competition and financial difficulties in Korea coastal shipping. (2) The excessive ship tonnage can be broken down into ship types as follows : oil carrier 250, 926 DWT(350%), cement carrier 9, 977 DWT(119%), iron material/machinery carrier 25, 665 DWT(117%), general cargo carrier 17, 416DWT(112%). (3) the current total ship crew of 5, 079 is more than the verified optimally efficient figure of 3, 808 by 1271. (4) From the viewpoint of management strategy, it is necessary that excessive ship tonnage be reduced and uneconomic outdated vessels be broken up. And its found that the diversion into economically efficient fleets is urgently required in order to meet increasing annual rate in the amounts of cargo(23, 877DWT). (5) The plans for the ship tonnage balance according to supply and demand are as follows 1) The establishment of a legislative system for the arrangement of ship tonnage. This would involve; (a) The announcement of an optimum tonnage which guides the licensing of cargo vessels and ship tonnage supply. (b) The establishment of an organization that substantially arrangement tonnage in Korea coastal shipping. 2) The announcement of an optimum ship tonnage both per year and short-term that guides current tonnage supply plans. 3) The settlement of elastic tariffs resulting in the protect6ion of coastal shipping's share from other tonnage supply plans. 4) The settlement of elastic tariffs resulting in the protection of coastal shipping's share from other transportation systems. 4) Restriction of ocean-going vessels from participating in coastal shipping routes. 5) Business rationalization of coastal shipping company which reduces uneconomic outdated vessels and boosts the national economy. If we are to achieve these ends, the followings are prerequisites; I) Because many non-licensed vessels are actually operating and threatening the safe voyage of the others in Korea coastal routes, it is necessary that those ind of vessels be controlled and punished by the authorities. II) The supply of ship tonnage in Korean coastal routes should be predently monitored because most of the coastal vessels are to small to be diverted into ocean-going routes in case of excessive supply. III) Every ship type which is engaged in coastal shipping should be specialized according to the characteristics of its routes as soon possible.

  • PDF

Application of Modified Mupit for the Recurrent Vulva Cancer in Brachytherapy (재발한 Vulvar 종양의 근접치료 시 Modified Mupit Applicator의 적용)

  • Kim, Jong-Sik;Jung, Chun-Young;Oh, Dong-Gyoon;Song, Ki-Won;Park, Young-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.1
    • /
    • pp.13-19
    • /
    • 2006
  • Purpose: To evaluate whether modified MUPIT applicator can effectively eradicate recurrent tumor in uterine cervix cancer and reduce rectal complication after complete radiation treatment. Materials and Methods: Modified MUPIT applicator basically consists of an acrylic cylinder with flexible brain applicator, an acrylic template with a predrilled array of holes that serve as guides for interstitial needles and interstitial needles. CT scan was peformed to determine tumor volume and the position of interstitial needles. Modified MUPIT applicator was applied to patient in operation room and the accuracy for position of interstitial needles in tumor volume was confirmed by CTscan. Brachytherapy was delivered using modified MUPIT applicator and RALS(192-lr HDR) after calculated computer planning by orthogonal film. The daily dose was 600cGy and the total dose was delivered 3,000 cGy in tumor volume by BID. Rectal dose was measured by TLD at 5 points so that evaluated the risk of rectal complication. Results: The application of modified MUPIT applicator improved dramatically dose distributions in tumor volume and follow-up of 3 month for this patient was clinically partial response without normal tissue complication, Rectal dose was measured 34.1 cGy, 57.1 cGy, 103.8 cGy, 162.7 cGy, 165.7 cGy at each points, especially the rectal dose including previous EBRT and ICR was 34.1 cGy, 57.1 cGy. Conclusion: Patients with locally recurrent tumor in uterine cervix cancel treated with modified MUPIT applicator can expect reasonable rates of local control. The advantages of the system are the fixed geometry provided by the template and cylinders. and improved dose distributions in irregular tumor volume without rectal complication.

  • PDF

A Study on the Development of a Simulation Model for Predicting Soil Moisture Content and Scheduling Irrigation (토양수분함량 예측 및 계획관개 모의 모형 개발에 관한 연구(I))

  • 김철회;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4279-4295
    • /
    • 1977
  • Two types of model were established in order to product the soil moisture content by which information on irrigation could be obtained. Model-I was to represent the soil moisture depletion and was established based on the concept of water balance in a given soil profile. Model-II was a mathematical model derived from the analysis of soil moisture variation curves which were drawn from the observed data. In establishing the Model-I, the method and procedure to estimate parameters for the determination of the variables such as evapotranspirations, effective rainfalls, and drainage amounts were discussed. Empirical equations representing soil moisture variation curves were derived from the observed data as the Model-II. The procedure for forecasting timing and amounts of irrigation under the given soil moisture content was discussed. The established models were checked by comparing the observed data with those predicted by the model. Obtained results are summarized as follows: 1. As a water balance model of a given soil profile, the soil moisture depletion D, could be represented as the equation(2). 2. Among the various empirical formulae for potential evapotranspiration (Etp), Penman's formula was best fit to the data observed with the evaporation pans and tanks in Suweon area. High degree of positive correlation between Penman's predicted data and observed data with a large evaporation pan was confirmed. and the regression enquation was Y=0.7436X+17.2918, where Y represents evaporation rate from large evaporation pan, in mm/10days, and X represents potential evapotranspiration rate estimated by use of Penman's formula. 3. Evapotranspiration, Et, could be estimated from the potential evapotranspiration, Etp, by introducing the consumptive use coefficient, Kc, which was repre sensed by the following relationship: Kc=Kco$.$Ka+Ks‥‥‥(Eq. 6) where Kco : crop coefficient Ka : coefficient depending on the soil moisture content Ks : correction coefficient a. Crop coefficient. Kco. Crop coefficients of barley, bean, and wheat for each growth stage were found to be dependent on the crop. b. Coefficient depending on the soil moisture content, Ka. The values of Ka for clay loam, sandy loam, and loamy sand revealed a similar tendency to those of Pierce type. c. Correction coefficent, Ks. Following relationships were established to estimate Ks values: Ks=Kc-Kco$.$Ka, where Ks=0 if Kc,=Kco$.$K0$\geq$1.0, otherwise Ks=1-Kco$.$Ka 4. Effective rainfall, Re, was estimated by using following relationships : Re=D, if R-D$\geq$0, otherwise, Re=R 5. The difference between rainfall, R, and the soil moisture depletion D, was taken as drainage amount, Wd. {{{{D= SUM from { {i }=1} to n (Et-Re-I+Wd)}}}} if Wd=0, otherwise, {{{{D= SUM from { {i }=tf} to n (Et-Re-I+Wd)}}}} where tf=2∼3 days. 6. The curves and their corresponding empirical equations for the variation of soil moisture depending on the soil types, soil depths are shown on Fig. 8 (a,b.c,d). The general mathematical model on soil moisture variation depending on seasons, weather, and soil types were as follow: {{{{SMC= SUM ( { C}_{i }Exp( { - lambda }_{i } { t}_{i } )+ { Re}_{i } - { Excess}_{i } )}}}} where SMC : soil moisture content C : constant depending on an initial soil moisture content $\lambda$ : constant depending on season t : time Re : effective rainfall Excess : drainage and excess soil moisture other than drainage. The values of $\lambda$ are shown on Table 1. 7. The timing and amount of irrigation could be predicted by the equation (9-a) and (9-b,c), respectively. 8. Under the given conditions, the model for scheduling irrigation was completed. Fig. 9 show computer flow charts of the model. a. To estimate a potential evapotranspiration, Penman's equation was used if a complete observed meteorological data were available, and Jensen-Haise's equation was used if a forecasted meteorological data were available, However none of the observed or forecasted data were available, the equation (15) was used. b. As an input time data, a crop carlender was used, which was made based on the time when the growth stage of the crop shows it's maximum effective leaf coverage. 9. For the purpose of validation of the models, observed data of soil moiture content under various conditions from May, 1975 to July, 1975 were compared to the data predicted by Model-I and Model-II. Model-I shows the relative error of 4.6 to 14.3 percent which is an acceptable range of error in view of engineering purpose. Model-II shows 3 to 16.7 percent of relative error which is a little larger than the one from the Model-I. 10. Comparing two models, the followings are concluded: Model-I established on the theoretical background can predict with a satisfiable reliability far practical use provided that forecasted meteorological data are available. On the other hand, Model-II was superior to Model-I in it's simplicity, but it needs long period and wide scope of observed data to predict acceptable soil moisture content. Further studies are needed on the Model-II to make it acceptable in practical use.

  • PDF

Au-Ag-Te Mineralization by Boiling and Dilution of Meteoric Ground-water in the Tongyeong Epithermal sold System, Korea: Implications from Reaction Path Modeling (광화유체의 비등과 희석에 의한 통영 천열수계 Au-Ag-Te 장화작용에 대한 반응경로 모델링)

  • Maeng-Eon Park;Kyu-Youl Sung
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.507-522
    • /
    • 2001
  • At the Tongyeong mine, quartz, rhodochrosite (kutnahorite), muscovite, illite, pyrite, galena, chalcopyrite. sphalerite, acanthite, and hessite are the principal vein minerals. They were deposited under epithermal conditions in two stages. Ore mineral assemblages and associated gangue phases in stage can be clearly divided into two general associations: an early cycle (band) that appeared with introduction of most of the sulfides and electrum, and a later cycle in which base metal and carbonate-bearing assemblages (mostly rhodochrosite) became dominant. Tellurides and some electrum occur as small rounded grains within subhedral-to euhedral pyrite or anhedral galena in stageII. Sulfide mineralization is zoned from pyrite to galena and sphalerite. We have used computer modeling to simulate formation of four stages of vein genesis. The reaction of a single fluid with andesite host rock at 28$0^{\circ}C$, isobaric cooling of a single fluid from 26$0^{\circ}C$ to 12$0^{\circ}C$, and boiling and mixing of a fluid with both decreasing pressure and temperature were studied using the CHILLER program. Calculations show that the precipitation of alteration minerals is due to fluid-andesite interaction as temperature drops. Speciation calculations confirm that the hydrothermal fluids with moderately high salinities and pH 5.7 (acid), were capable of transporting significant quantities of base metals. The abundance of gold in fluid depends critically on the ratio of total base metals and iron to sulfide in the aqueous phase because gold is transported as an Au(HS)$_2$- complex, which is sensitive to sulfide activity. Modeling results for Tongyeong mineralization show strong influence of shallow hydrogenic processes such as boiling and fluid mixing. The variable handing in stageII mineralization is best explained by maltiple boilings of hydrothermal fluid followed by lateral mixing of the fluid with overlying diluted, steam-heated ground water. The degree of similarity of calculated mineral assemblages and observed electrum composition and field relationships shows the utility of the numerical simulation method in identifying chemical processes that accompany boiling and mixing in Te-bearing Au-Ag system. This has been applied in models to narrow the search area for epithermal ores.

  • PDF

Real-Time 3D Ultrasound Imaging Method Using a Cross Array Based on Synthetic Aperture Focusing: I. Spherical Wave Transmission Approach (합성구경 기반의 교차어레이를 이용한 실시간 3차원 초음파 영상화 기법 : I. 구형파 송신 방법)

  • 김강식;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.391-401
    • /
    • 2004
  • 3D imaging systems using 2D phased arrays have a large number of active channels, compelling to use a very expensive and bulky beamforming hardware, and suffer from low volume rate because, in principle, at least one ultrasound transmit-receive event is necessary to construct each scanline. A high speed 3D imaging method using a cross array proposed previously to solve the above limitations can implement fast scanning and dynamic focusing in the lateral direction but suffer from low resolution except at the fixed transmit focusing along the elevational direction. To overcome these limitations, we propose a new real-time volumetric imaging method using a cross array based on the synthetic aperture technique. In the proposed method, ultrasound wave is transmitted successively using each elements of an 1D transmit array transducer, one at a time, which is placed along the elevational direction and for each firing, the returning pulse echoes are received using all elements of an 1D receive array transducer placed along the lateral direction. On receive, by employing the conventional dynamic focusing and synthetic aperture method along lateral and elevational directions, respectively, ultrasound waves can be focused effectively at all imaging points. In addition, in the proposed method, a volume of interest consisting of any required number of slice images, can be constructed with the same number of transmit-receive steps as the total number of transmit array elements. Computer simulation results show that the proposed method can provide the same and greatly improved resolutions in the lateral and elevational directions, respectively, compared with the 3D imaging method using a cross array based on the conventional fixed focusing. In the accompanying paper, we will also propose a new real-time 3D imaging method using a cross array for improving transmit power and elevational spatial resolution, which uses linear wave fronts on transmit.

Real-Time 3D Ultrasound Imaging Method Using a Cross Array Based on Synthetic Aperture Focusing: II. Linear Wave Front Transmission Approach (합성구경 기반의 교차어레이를 이용한 실시간 3차원 초음파 영상화 기법 : II. 선형파면 송신 방법)

  • 김강식;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.403-414
    • /
    • 2004
  • In the accompanying paper, we proposed a real. time volumetric imaging method using a cross array based on receive dynamic focusing and synthetic aperture focusing along lateral and elevational directions, respetively. But synthetic aperture methods using spherical waves are subject to beam spreading with increasing depth due to the wave diffraction phenomenon. Moreover, since the proposed method uses only one element for each transmission, it has a limited transmit power. To overcome these limitations, we propose a new real. time volumetric imaging method using cross arrays based on synthetic aperture technique with linear wave fronts. In the proposed method, linear wave fronts having different angles on the horizontal plane is transmitted successively from all transmit array elements. On receive, by employing the conventional dynamic focusing and synthetic aperture methods along lateral and elevational directions, respectively, ultrasound waves can be focused effectively at all imaging points. Mathematical analysis and computer simulation results show that the proposed method can provide uniform elevational resolution over a large depth of field. Especially, since the new method can construct a volume image with a limited number of transmit receive events using a full transmit aperture, it is suitable for real-time 3D imaging with high transmit power and volume rate.

Recent Progress in Air Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 (공기조화, 냉동 분야의 최근 연구 동향: 2006년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.427-446
    • /
    • 2008
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 has been accomplished. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro heat exchanger and siphon cooling device using nano-fluid. Traditional CFD and flow visualization methods were still popular and widely used in research and development. Studies about diffusers and compressors were performed in fluid machinery. Characteristics of flow and heat transfer and piping optimization were studied in piping systems. (2) The papers on heat transfer have been categorized into heat transfer characteristics, heat exchangers, heat pipes, and two-phase heat transfer. The topics on heat transfer characteristics in general include thermal transport in a cryo-chamber, a LCD panel, a dryer, and heat generating electronics. Heat exchangers investigated include pin-tube type, plate type, ventilation air-to-air type, and heat transfer enhancing tubes. The research on a reversible loop heat pipe, the influence of NCG charging mass on heat transport capacity, and the chilling start-up characteristics in a heat pipe were reported. In two-phase heat transfer area, the studies on frost growth, ice slurry formation and liquid spray cooling were presented. The studies on the boiling of R-290 and the application of carbon nanotubes to enhance boiling were noticeable in this research area. (3) Many studies on refrigeration and air conditioning systems were presented on the practical issues of the performance and reliability enhancement. The air conditioning system with multi indoor units caught attention in several research works. The issues on the refrigerant charge and the control algorithm were treated. The systems with alternative refrigerants were also studied. Carbon dioxide, hydrocarbons and their mixtures were considered and the heat transfer correlations were proposed. (4) Due to high oil prices, energy consumption have been attentioned in mechanical building systems. Research works have been reviewed in this field by grouping into the research on heat and cold sources, air conditioning and cleaning research, ventilation and fire research including tunnel ventilation, and piping system research. The papers involve the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies on indoor air quality took a great portion in the field of building environments. Various other subjects such as indoor thermal comfort were also investigated through computer simulation, case study, and field experiment. Studies on energy include not only optimization study and economic analysis of building equipments but also usability of renewable energy in geothermal and solar systems.

Characterization of quality changes of whole super sweet corn (Zea mays saccharata Sturt.) during thermal sterilization for shelf-stable products (상온유통을 위한 가열살균 중의 통 초당옥수수의 품질변화 연구)

  • Lee, Yun Ju;Yoon, Won Byong
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • This study investigated the quality changes in whole super sweet corn during thermal processing to extend its shelf-life. To minimize the reduction of unique texture of whole sweet corn after the sterilization, the alcohol sanitation applied and the cold point of a whole corn ear was determined using a computer simulation. The cold point was located between the corn kernel and the cob. The microorganisms on the surface of sweet corn were reduced by more than 1 log CFU/g after alcohol sanitation, then the whole corn was treated to satisfy the degree of sterilization ($F_{121.1}=4$). The quality of sterilized sweet corn was compared with the control that was treated with steaming. The quality changes of sterilized sweet corn during storage were monitored for 9 months at $25^{\circ}C$. The hardness was maintained within 30% of its initial value. The minimum of hardness was $464.50{\pm}103.35g$ and maximum of hardness was $514.50{\pm}81.83g$. The differences in the sugar content among the samples were found, but the sugar content of corn kernel remained within 30% of the control, ranging from $28.83{\pm}1.05$ to $34.36{\pm}0.42%$. The yellowness was higher than that of control by 5%. The maximum value of yellowness was $34.36{\pm}0.42$. The general bacteria and molds and yeasts in corn kernel stored at $25^{\circ}C$ were not detected after 9 months of storage at $25^{\circ}C$. Therefore, in this study, we have demonstrated that the thermal sterilized method extends the shelf-life of whole sweet corn with minimizing its quality changes over 6 months in room temperature.

A Study on Metaverse Construction Based on 3D Spatial Information of Convergence Sensors using Unreal Engine 5 (언리얼 엔진 5를 활용한 융복합센서의 3D 공간정보기반 메타버스 구축 연구)

  • Oh, Seong-Jong;Kim, Dal-Joo;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.2
    • /
    • pp.171-187
    • /
    • 2022
  • Recently, the demand and development for non-face-to-face services are rapidly progressing due to the pandemic caused by the COVID-19, and attention is focused on the metaverse at the center. Entering the era of the 4th industrial revolution, Metaverse, which means a world beyond virtual and reality, combines various sensing technologies and 3D reconstruction technologies to provide various information and services to users easily and quickly. In particular, due to the miniaturization and economic increase of convergence sensors such as unmanned aerial vehicle(UAV) capable of high-resolution imaging and high-precision LiDAR(Light Detection and Ranging) sensors, research on digital-Twin is actively underway to create and simulate real-life twins. In addition, Game engines in the field of computer graphics are developing into metaverse engines by expanding strong 3D graphics reconstuction and simulation based on dynamic operations. This study constructed a mirror-world type metaverse that reflects real-world coordinate-based reality using Unreal Engine 5, a recently announced metaverse engine, with accurate 3D spatial information data of convergence sensors based on unmanned aerial system(UAS) and LiDAR. and then, spatial information contents and simulations for users were produced based on various public data to verify the accuracy of reconstruction, and through this, it was possible to confirm the construction of a more realistic and highly utilizable metaverse. In addition, when constructing a metaverse that users can intuitively and easily access through the unreal engine, various contents utilization and effectiveness could be confirmed through coordinate-based 3D spatial information with high reproducibility.

Dosimetry of the Low Fluence Fast Neutron Beams for Boron Neutron Capture Therapy (붕소-중성자 포획치료를 위한 미세 속중성자 선량 특성 연구)

  • Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Park, Hyun-Joo;Lee, Suk;Lee, Kyung-Hoo;Suh, So-Heigh;Kim, Mi-Sook;Cho, Chul-Koo;Yoo, Seong-Yul;Yu, Hyung-Jun;Gwak, Ho-Shin;Rhee, Chang-Hun
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.66-73
    • /
    • 2001
  • Purpose : For the research of Boron Neutron Capture Therapy (BNCT), fast neutrons generated from the MC-50 cyclotron with maximum energy of 34.4 MeV in Korea Cancer Center Hospital were moderated by 70 cm paraffin and then the dose characteristics were investigated. Using these results, we hope to establish the protocol about dose measurement of epi-thermal neutron, to make a basis of dose characteristic of epi-thermal neutron emitted from nuclear reactor, and to find feasibility about accelerator-based BNCT. Method and Materials : For measuring the absorbed dose and dose distribution of fast neutron beams, we used Unidos 10005 (PTW, Germany) electrometer and IC-17 (Far West, USA), IC-18, ElC-1 ion chambers manufactured by A-150 plastic and used IC-l7M ion chamber manufactured by magnesium for gamma dose. There chambers were flushed with tissue equivalent gas and argon gas and then the flow rate was S co per minute. Using Monte Carlo N-Particle (MCNP) code, transport program in mixed field with neutron, photon, electron, two dimensional dose and energy fluence distribution was calculated and there results were compared with measured results. Results : The absorbed dose of fast neutron beams was $6.47\times10^{-3}$ cGy per 1 MU at the 4 cm depth of the water phantom, which is assumed to be effective depth for BNCT. The magnitude of gamma contamination intermingled with fast neutron beams was $65.2{\pm}0.9\%$ at the same depth. In the dose distribution according to the depth of water, the neutron dose decreased linearly and the gamma dose decreased exponentially as the depth was deepened. The factor expressed energy level, $D_{20}/D_{10}$, of the total dose was 0.718. Conclusion : Through the direct measurement using the two ion chambers, which is made different wall materials, and computer calculation of isodose distribution using MCNP simulation method, we have found the dose characteristics of low fluence fast neutron beams. If the power supply and the target material, which generate high voltage and current, will be developed and gamma contamination was reduced by lead or bismuth, we think, it may be possible to accelerator-based BNCT.

  • PDF