• 제목/요약/키워드: computer image analysis

검색결과 1,466건 처리시간 0.032초

Image Analysis Fuzzy System

  • Abdelwahed Motwakel;Adnan Shaout;Anwer Mustafa Hilal;Manar Ahmed Hamza
    • International Journal of Computer Science & Network Security
    • /
    • 제24권1호
    • /
    • pp.163-177
    • /
    • 2024
  • The fingerprint image quality relies on the clearness of separated ridges by valleys and the uniformity of the separation. The condition of skin still dominate the overall quality of the fingerprint. However, the identification performance of such system is very sensitive to the quality of the captured fingerprint image. Fingerprint image quality analysis and enhancement are useful in improving the performance of fingerprint identification systems. A fuzzy technique is introduced in this paper for both fingerprint image quality analysis and enhancement. First, the quality analysis is performed by extracting four features from a fingerprint image which are the local clarity score (LCS), global clarity score (GCS), ridge_valley thickness ratio (RVTR), and the Global Contrast Factor (GCF). A fuzzy logic technique that uses Mamdani fuzzy rule model is designed. The fuzzy inference system is able to analyse and determinate the fingerprint image type (oily, dry or neutral) based on the extracted feature values and the fuzzy inference rules. The percentages of the test fuzzy inference system for each type is as follow: For dry fingerprint the percentage is 81.33, for oily the percentage is 54.75, and for neutral the percentage is 68.48. Secondly, a fuzzy morphology is applied to enhance the dry and oily fingerprint images. The fuzzy morphology method improves the quality of a fingerprint image, thus improving the performance of the fingerprint identification system significantly. All experimental work which was done for both quality analysis and image enhancement was done using the DB_ITS_2009 database which is a private database collected by the department of electrical engineering, institute of technology Sepuluh Nopember Surabaya, Indonesia. The performance evaluation was done using the Feature Similarity index (FSIM). Where the FSIM is an image quality assessment (IQA) metric, which uses computational models to measure the image quality consistently with subjective evaluations. The new proposed system outperformed the classical system by 900% for the dry fingerprint images and 14% for the oily fingerprint images.

Extraction of Computer Image Analysis Information by Desk Top Computer from Beef Carcass Cross Sections

  • Karnuah, A.B.;Moriya, K.;Sasaki, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권8호
    • /
    • pp.1171-1176
    • /
    • 1999
  • The precision and reliability of the Computer Image Analysis technique using a desk top computer for extracting information from carcass cross section scans was evaluated by the repeatability (R) and coefficient of variation (CV) for error variance. The 6th and 7th ribs cross section of carcasses from 55 fattened Japanese Black steers were used. The image analysis was conducted using a desk top computer (Macintosh-Apple Vision 1710 Display) connected to a scanner and an image capture camera. Two software applications, Adobe Photoshop and Mac Scope were used interchangeably. The information extracted and measured were individual muscle area, circumference length, long and short axes lengths, muscle direction; distance between any two muscle centers of gravity; cross section total area, lean, fat, and bone. The information was extracted after the processes of scanning, digitization, masking, muscle separation, and binarization. When using the Computer Image Analysis technique by desk top computer, proper digitization and selection of scanning resolution are very important in order to obtain accurate information. The R-values for muscle area, circumference, long and axes lengths, and direction ranged from 0.95 to 0.99, whereas those of the distance between any two muscle centers of gravity ranged from 0.96 to 0.99, respectively. For the cross section total area, lean, fat, and bone it ranged from 0.83 to 0.99. Excellent repeatability measurements were observed for muscle direction and distance between any two muscle centers of gravity. The results indicate that the Computer Image Analysis technique using a desk top computer for extracting information from carcass cross section is reliable and has high precision.

화상해석에 의한 기계윤할 운동면의 작동상태 진단 (Operating Condition Diagnosis of the Lubricated Machine Moving Surface by Image Analysis)

  • 박흥식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.79-87
    • /
    • 1999
  • The most part of the faculty drop a trouble and damage of machine equipment even if whatever cause they break out take place at local and trifling place and the factor dominating their trouble is due to wear debris occurred in the lubricated machine moving surface. This study has been car-ried out to identify morphology of wear debris on the lubricated machine moving system by means of computer image analysis. Namely the wear debris contained in lubricating oil extracted from movable machine equipment will be filtered through membrane filter(void diameter 0.45${\mu}m$) and will be analyzed with its data information such as 50% volume diameter aspect roundness and reflectivity. Morphological characteristic of wear debris is easily distinguished by four shape parameters it is necessary to divide small class of every 100 wear debris in total wear particles in order to distinguish morphological characteristic of wear debris more easily by computer image analysis. We are sure that operation condition diagnosis of the lubricated machine moving surfaces is possible by computer image analysis.

  • PDF

Multi-Focus Image Fusion Using Transformation Techniques: A Comparative Analysis

  • Ali Alferaidi
    • International Journal of Computer Science & Network Security
    • /
    • 제23권4호
    • /
    • pp.39-47
    • /
    • 2023
  • This study compares various transformation techniques for multifocus image fusion. Multi-focus image fusion is a procedure of merging multiple images captured at unalike focus distances to produce a single composite image with improved sharpness and clarity. In this research, the purpose is to compare different popular frequency domain approaches for multi-focus image fusion, such as Discrete Wavelet Transforms (DWT), Stationary Wavelet Transforms (SWT), DCT-based Laplacian Pyramid (DCT-LP), Discrete Cosine Harmonic Wavelet Transform (DC-HWT), and Dual-Tree Complex Wavelet Transform (DT-CWT). The objective is to increase the understanding of these transformation techniques and how they can be utilized in conjunction with one another. The analysis will evaluate the 10 most crucial parameters and highlight the unique features of each method. The results will help determine which transformation technique is the best for multi-focus image fusion applications. Based on the visual and statistical analysis, it is suggested that the DCT-LP is the most appropriate technique, but the results also provide valuable insights into choosing the right approach.

영상 검색을 위한 적응적 컴포넌트 분석 시스템 설계 (The Design of Adaptive Component Analysis System for Image Retrieval)

  • 최철;박장춘
    • 한국컴퓨터정보학회논문지
    • /
    • 제9권2호
    • /
    • pp.19-26
    • /
    • 2004
  • 본 논문에서는 내용 기반 영상 검색 시스템(Content Based Image Retrieval System)의 특징 추출(feature extraction)과 분석(analysis)을 위한 방법으로 적응적 컴포넌트 분석(ACA: Adaptive Component Analysis)을 제안하고 있다. 검색을 위해서 영상에서 추출된 특징들은 영상의 도메인(domain)에 따라 적절하게 적용해야만 좋은 검색 결과를 얻을 수 있다. 이러한 조건을 만족시키기 위한 방법으로 본 논문에서는 검색 측정도(retrieval measurement)를 제안하고 있다. ACA는 알고리즘과 시스템적인 관점에서 볼 때, 기존의 내용 기반 영상 검색을 위한 중간 단계라고 할 수 있으며, 검색 속도향상 및 성능 개선에 목표를 두고 있다

  • PDF

Foreign Detection Based on Wavelet Transform Algorithm with Image Analysis Mechanism in the Inner Wall of the Tube

  • Zhu, Jinlong;Yu, Fanhua;Sun, Mingyu;Zhao, Dong;Geng, Qingtian
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.34-46
    • /
    • 2019
  • A method for detecting foreign substances in mould based on scatter grams was presented to protect moulds automatically during moulding production. This paper proposes a wavelet transform foreign detection method based on Monte Carlo analysis mechanism to identify foreign objects in the tube. We use the Monte Carlo method to evaluate the image, and obtain the width of the confidence interval by the deviation statistical gray histogram to divide the image type. In order to stabilize the performance of the algorithm, the high-frequency image and the low-frequency image are respectively drawn. By analyzing the position distribution of the pixel gray in the two images, the suspected foreign object region is obtained. The experiments demonstrate the effectiveness of our approach by evaluating the labeled data.

A Practical Digital Video Database based on Language and Image Analysis

  • Liang, Yiqing
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1997년도 International Conference MULTIMEDIA DATABASES on INTERNET
    • /
    • pp.24-48
    • /
    • 1997
  • . Supported byㆍDARPA′s image Understanding (IU) program under "Video Retrieval Based on Language and image Analysis" project.DARPA′s Computer Assisted Education and Training Initiative program (CAETI)ㆍObjective: Develop practical systems for automatic understanding and indexing of video sequences using both audio and video tracks(omitted)

  • PDF

사전 지식을 이용한 축구 경기장면 분석 및 좌표 변환 (Soccer Scene Analysis and Coordinate Transformation using a priori Knowledge)

  • 윤호섭;소정;민병우;양영규
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.1085-1088
    • /
    • 1999
  • This paper presents a method for soccer scene analysis and coordinate transformation from scene to ground model using a priori knowledge. First, the ground and spectator regions are separated, and various objects are extracted from the separated ground region. Second, an affine model is used for mapping the object positions on the soccer image into the position on the ground model. Problems regarding holes arising from mapping processing are solved using inverse mapping instead of a usual interpolation method. Experiments are performed on a PC using about 100 RGB images acquired at 240*640 resolution and 3∼5 frames per second.

  • PDF

Quality Inspection of Dented Capsule using Curve Fitting-based Image Segmentation

  • Kwon, Ki-Hyeon;Lee, Hyung-Bong
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권12호
    • /
    • pp.125-130
    • /
    • 2016
  • Automatic quality inspection by computer vision can be applied and give a solution to the pharmaceutical industry field. Pharmaceutical capsule can be easily affected by flaws like dents, cracks, holes, etc. In order to solve the quality inspection problem, it is required computationally efficient image processing technique like thresholding, boundary edge detection and segmentation and some automated systems are available but they are very expensive to use. In this paper, we have developed a dented capsule image processing technique using edge-based image segmentation, TLS(Total Least Squares) curve fitting technique and adopted low cost camera module for capsule image capturing. We have tested and evaluated the accuracy, training and testing time of the classification recognition algorithms like PCA(Principal Component Analysis), ICA(Independent Component Analysis) and SVM(Support Vector Machine) to show the performance. With the result, PCA, ICA has low accuracy, but SVM has good accuracy to use for classifying the dented capsule.

Wavelet-based Image Denoising with Optimal Filter

  • Lee, Yong-Hwan;Rhee, Sang-Burm
    • Journal of Information Processing Systems
    • /
    • 제1권1호
    • /
    • pp.32-35
    • /
    • 2005
  • Image denoising is basic work for image processing, analysis and computer vision. This paper proposes a novel algorithm based on wavelet threshold for image denoising, which is combined with the linear CLS (Constrained Least Squares) filtering and thresholding methods in the transform domain. We demonstrated through simulations with images contaminated by white Gaussian noise that our scheme exhibits better performance in both PSNR (Peak Signal-to-Noise Ratio) and visual effect.