• 제목/요약/키워드: computer based training

검색결과 1,321건 처리시간 0.037초

몰입형 증강현실 교육 모델 설계에 관한 연구 (A Study on the Design of Immersed Augmented Reality Education Models)

  • 태효식
    • 사물인터넷융복합논문지
    • /
    • 제7권4호
    • /
    • pp.23-28
    • /
    • 2021
  • 4차 산업혁명을 통하여 인공지능, AR/VR, 빅데이터 등의 다양한 분야에서 급속하게 발전하고 있고, 그 중심에는 소프트웨어가 있다. 교육 분야에서도 기술의 발전을 뒷받침하기 위한 융합교육의 중요성이 강조되고 있는 상황으로, 소프트웨어 기술의 경쟁을 위하여 국내에서는 소프트웨어 개발 인력의 확보가 우선 되어야 한다. 그러나 과거 하드웨어 중심 사회와는 다르게 소프트웨어 기술 인력의 역할은 매우 중요한 사안이나, 기업이 필요한 인재상과는 거리가 있는 인력을 배출하고 있는 실정이다. 본 논문에서는 증강현실 소프트웨어 전문가 양성을 위한 몰입형 교육 모델을 제시하고, 이를 기반으로 몰입형 증강현실 교육 모델의 프로그램과 관련된 질을 파악할 수 있는 평가지표를 제안한다. 제안 모델을 통하여 모델의 장단점을 파악하고, 교육 프로그램의 개선 방향 설정에 기여할 수 있을 것으로 기대된다.

물체 탐지 기술을 사용하여 골프 그린에서 홀 컵 인지 모델 개발 (Development of a Hole Cup Recognition Model on Golf Green Using Object Detection Technology)

  • 이재문;황기태;정인환
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권1호
    • /
    • pp.15-21
    • /
    • 2023
  • 본 논문은 골프 그린에서 홀 컵을 인식하는 인공 지능 모델의 개발에 관한 연구이다. 그린에서 홀 컵의 인지을 위하여 CNN기반 물체 탐지 알고리즘을 사용하였다. 또한 물체 탐지 알고리즘의 모델을 생성하기 위하여 애플사의 CreateML을 사용하였다. 본 논문은 CreateML의 요구에 맞도록 120개의 학습 이미지 및 주석 데이터로 JSON 파일을 만들었다. 또한 정확한 학습을 위하여 학습 데이터에 데이터 증폭 알고리즘을 사용하여 288개의 학습 데이터로 증폭하였고, 이를 사용하여 학습하였다. CreateML에서 요구하는 Iterations, Batch size, Grid size를 변화시키면서 모델의 성능을 높이는 파라미터 값을 찾았다. 개발된 모델을 적용하여 프로토타입 앱을 개발하였고, 이 프로토타입을 이용하여 실제 골프장 그린에서 홀 컵 인지에 대한 성능을 측정하였다. 측정 결과 일반적인 골퍼의 퍼팅 거리인 10m이내에서 홀 컵을 정확히 인지함을 알 수 있었다.

전이 학습을 이용한 VGG19 기반 말라리아셀 이미지 인식 (Malaria Cell Image Recognition Based On VGG19 Using Transfer Learning)

  • ;김강철
    • 한국전자통신학회논문지
    • /
    • 제17권3호
    • /
    • pp.483-490
    • /
    • 2022
  • 말라리아는 기생충에 의해 발생하는 질병으로 전 세계에 퍼져있다. 말라리아 셀을 인식하는데 일반적으로 두꺼운 혈흔과 얇은 혈흔 검사 방법이 사용되지만 이러한 방법은 많은 수작업 계산이 필요하여 효율성과 정확성이 매우 낮을 뿐만 아니라 빈민국에는 병리학자가 부족하여 말라리아 치명율이 높다. 본 논문에서는 특징 추출기, 잔류 구조와 완전 연결층으로 구성되고, 전이 학습을 이용한 말라리아셀 이미지를 인식하는 모델을 제안한다. VGG-19 모델의 사전 학습된 파라미터가 사용될 때 일부 컨볼루션층의 파라미터는 고정되고, 모델의 데이터에 맞추기 위하여 미세조정이 사용된다. 그리고 제안된 모델과 비교하기 위하여 잔류 구조가 없는 말라리아셀 인식 모델을 구현한다. 실험 결과 잔류 구조를 사용한 모델이 잔류 구조가 없는 모델에 비하여 성능이 우수 하였으며, 최신 논문과 비교하여 가장 높은 97.33%의 정확도를 보여주었다.

Investigation of 0.5 MJ superconducting energy storage system by acoustic emission method.

  • Miklyaev, S.M.;Shevchenko, S.A.;Surin, M.I.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.961-965
    • /
    • 1998
  • The rapid development of small-scale (1-10 MJ) Superconducting Magnetic Energy Storage Systems (SMES) can be explained by real perspective of practical implementation of these devices in electro power nets. However the serious problem of all high mechanically stressed superconducting coils-problem of training and degradation (decreasing) of operating current still exists. Moreover for SMES systems this problems is more dangerous because of pulsed origin of mechanical stresses-one of the major sources of local heat disturbances in superconducting coils. We investigated acoustic emission (AE) phenomenon on model and 0.5 MJ SMES coils taking into account close correlation of AE and local heat disturbances. Two-coils 0.5 MJ SMES system was developed, manufactured and tested at Russian Research Center in the frames of cooperation with Korean Electrical Engineering Company (KEPCO) [1]. The two-coil SMES operates with the stored energy transmitted between coils in the course of a single cycle with 2 seconds energy transfer time. Maximum operating current 1.55 kA corresponds to 0.5 MF in each coil. The Nb-Ti-based conductor was designed and used for SMES manufacturing. It represents transposed cable made of Nb-Ti strands in copper matrix, several cooper strands and several stainless steel strands. The coils are wound onto fiberglass cylindrical bobbins. To make AE event information more useful a real time instrumentation system was used. Two main measured and computer processed AE parameters were considered: the energy of AE events (E) and the accumulated energy of AE events (E ). Influence of current value in 0.5 MJ coils on E and E was studied. The sensors were installed onto the bobbin and the external surface of magnets. Three levels of initial current were examined: 600A, 1000A, 2450 A. An extraordinary strong dependence of the current level on E and E was observed. The specific features of AE from model coils, operated in sinusoidal vibration current changing mode were investigated. Three current frequency modes were examined: 0.012 Hz, 0.03 Hz and 0.12 Hz. In all modes maximum amplitude 1200 A was realized.

  • PDF

음향 기반 물 사용 활동 감지용 엣지 컴퓨팅 시스템 (The Edge Computing System for the Detection of Water Usage Activities with Sound Classification)

  • 현승호;지영준
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권2호
    • /
    • pp.147-156
    • /
    • 2023
  • Efforts to employ smart home sensors to monitor the indoor activities of elderly single residents have been made to assess the feasibility of a safe and healthy lifestyle. However, the bathroom remains an area of blind spot. In this study, we have developed and evaluated a new edge computer device that can automatically detect water usage activities in the bathroom and record the activity log on a cloud server. Three kinds of sound as flushing, showering, and washing using wash basin generated during water usage were recorded and cut into 1-second scenes. These sound clips were then converted into a 2-dimensional image using MEL-spectrogram. Sound data augmentation techniques were adopted to obtain better learning effect from smaller number of data sets. These techniques, some of which are applied in time domain and others in frequency domain, increased the number of training data set by 30 times. A deep learning model, called CRNN, combining Convolutional Neural Network and Recurrent Neural Network was employed. The edge device was implemented using Raspberry Pi 4 and was equipped with a condenser microphone and amplifier to run the pre-trained model in real-time. The detected activities were recorded as text-based activity logs on a Firebase server. Performance was evaluated in two bathrooms for the three water usage activities, resulting in an accuracy of 96.1% and 88.2%, and F1 Score of 96.1% and 87.8%, respectively. Most of the classification errors were observed in the water sound from washing. In conclusion, this system demonstrates the potential for use in recording the activities as a lifelog of elderly single residents to a cloud server over the long-term.

심층 자동 인코더를 이용한 시맨틱 세그멘테이션용 위성 이미지 향상 방법 (Semantic Segmentation Intended Satellite Image Enhancement Method Using Deep Auto Encoders)

  • ;이효종
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권8호
    • /
    • pp.243-252
    • /
    • 2023
  • 위성 이미지는 토지 표면 조사에서 매우 중요하다. 따라서 위성에서 지상국으로 이미지를 전송하기 위해 다양한 방법을 사용하고 있다. 그러나 전송 시스템의 품질 저하로 인해 이미지는 왜곡에 취약하고 올바른 데이터를 제공하지 못하고 있다. 그러한 이미지의 세그먼트 결과는 토지 표면 데이터를 올바르게 분류할 수 없다. 본 논문에서는 위성영상에 대한 자동인코더 기반의 영상 전처리 방법을 제안한다. 실험결과 사전 향상 기술을 사용하여 세그멘테이션 결과도 크게 향상될 수 있음을 보여주었다. 또한 본 논문에서 적용한 항공 이미지 향상기법은 토지 자원의 정확한 평가에 이바지할 수 있음을 확인하였다.

솔라스쿨 활용 교육 지원 사업 평가 연구 : 케냐와 우간다의 사례 (Evaluative Study of Solar School Project in Kenya and Uganda)

  • 서순식
    • 창의정보문화연구
    • /
    • 제5권3호
    • /
    • pp.245-253
    • /
    • 2019
  • 2013년부터 아프리카 12국에 구축해온 솔라스쿨 활용 교육 지원 사업의 교수학습 활용 사례 및 성과를 규명하기 위해 케냐 1개교와 우간다 2개교를 방문하여, 학생들의 컴퓨터 사용 빈도 등 양태, ICT 기반 교수 학습 접근성 향상으로 인한 교사 자질 개선 여부 등을 조사하였다. 각 학교별 선도 교사, 교장, 교감, ICT 지원 인력, 학생들을 대상으로 면담조사를 실시하였다. 연구 결과는 다음과 같다. 첫째, 학생들의 입학률, 전입률, 출석률이 증진되었다. 둘째, 교사역량강화를 위한 현장연수, 초청연수의 효과를 확인하였다. 셋째, 솔라스쿨은 인근 학교 및 지역 사회의 변화를 위해 촉매 역할을 수행하였다. 넷째, 학교 내 모든 교육 관련자 간 솔라스쿨 지원사업의 의의와 주인의식의 공유 필요성과 지속적인 역량 강화를 위한 노력이 후속되어야 한다는 요구를 규명하였다.

텍스트 요약을 위한 어텐션 기반 BART 모델 미세조정 (Fine-tuning of Attention-based BART Model for Text Summarization)

  • 안영필;박현준
    • 한국정보통신학회논문지
    • /
    • 제26권12호
    • /
    • pp.1769-1776
    • /
    • 2022
  • 긴 문장으로 이루어진 글을 자동으로 요약하는 것은 중요한 기술이다. BART 모델은 이러한 요약 문제에서 좋은 성능을 보여주고 널리 사용되고 있는 모델 중 하나이다. 일반적으로 특정 도메인의 요약 모델을 생성하기 위해서는 큰 데이터세트를 학습한 언어 모델을 그 도메인에 맞게 다시 학습하는 미세조정 작업을 수행한다. 이러한 미세조정은 일반적으로 마지막 전 연결 계층의 노드 수를 변경하는 방식으로 진행된다. 하지만 본 논문에서는 최근 다양한 모델에 적용되어 좋은 성능을 보여주고 있는 어텐션 계층을 추가하는 방법으로 미세조정하는 방법을 제안한다. 제안하는 방법의 성능을 평가하기 위해 미세조정 과정에서 층을 더 깊게 쌓기, 스킵 연결 없는 미세조정 등 다양한 실험을 진행하였다. BART 언어 모델에 스킵 연결을 가진 2개의 어텐션 계층을 추가하였을 때 가장 좋은 성능을 보였다.

CNN 기술을 적용한 침수탐지 학습모델 개발 (Development of a Flooding Detection Learning Model Using CNN Technology)

  • 김동준;최유진;박경민;박상준;이재문;황기태;정인환
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권6호
    • /
    • pp.1-7
    • /
    • 2023
  • 본 논문은 인공지능 기술을 활용하여 일반 도로와 침수 도로를 분류하는 학습모델을 개발하였다. 다양한 데이터 증강기법을 사용하여 학습 데이터의 다양성을 확장하며, 여러 환경에서도 좋은 성능을 보이는 모델을 구현하였다. CNN 기반의 Resnet152v2 모델을 사전 학습모델로 활용하여, 전이 학습을 진행하였다. 모델의 학습 과정에서 다양한 파라미터 튜닝 및 최적화 과정을 거쳐 최종 모델의 성능을 향상하였다. 학습은 파이선으로 Google Colab NVIDIA Tesla T4 GPU를 사용하여 구현하였고, 테스트 결과 시험 데이터 세트에서 매우 높은 정확도로 침수상황을 탐지함을 알 수 있었다.

IPA를 활용한 보건의료직 종사자의 업무능력에 대한 중요도와 최종학교 기여도 인식 분석 (Analysis of Perception of the Importance of Work Ability and the Final School Contribution Among Health Care Workers' Using IPA)

  • 고민석
    • 보건의료생명과학 논문지
    • /
    • 제10권2호
    • /
    • pp.169-178
    • /
    • 2022
  • 본 연구는 보건의료직 종사자의 업무능력에 대한 중요도와 이에 대한 최종학교 기여도의 인식 수준 및 이들 간의 차이를 파악하고, IPA를 활용하여 분석함으로써 보건의료직 양성 교육과정의 방향성을 탐색하고자 하였다. 이를 위해 제14차(2020년) 청년패널조사의 원자료 중 보건의료직 종사자 총 465명의 응답자료를 분석하였다. IPA를 활용한 분석결과, 개선시급영역은 도출되지 않았으며, 지속유지영역은 전문분야 지식, 전문분야 실용적 지식, 의사소통, 타인과 협력하는 능력, 고객상대능력, 스스로 배우는 능력, 계획적인 생활습관, 변화적응능력, 올바른 직업관과 비즈니스 매너, 문서 이해로 나타났고, 낮은 우선순위영역은 컴퓨터 사용능력, 창의적 문제해결능력, 외국어 읽고 쓰기, 수학문제 풀이, 외국어회화로 나타났으며, 과잉투입 영역은 문서 작성으로 나타났다. 이러한 연구결과를 바탕으로 보건의료직 종사자들을 양성하기 위한 효과적인 교육과정 개발을 위한 시사점을 제언하였다.