• Title/Summary/Keyword: computed tomography(CT)

Search Result 2,627, Processing Time 0.029 seconds

Comparison of cone beam CT and conventional CT in absorbed and effective dose (Cone beam CT와 일반 CT의 흡수선량 및 유효선량 비교평가)

  • Kim, Sang-Yeon;Han, Jin-Woo;Park, In-Woo
    • Imaging Science in Dentistry
    • /
    • v.38 no.1
    • /
    • pp.7-15
    • /
    • 2008
  • Purpose: This study provides comparative measurements of absorbed and effective doses for newly developed cone beam computed tomography (CT) in comparison with these doses for conventional CT. Materials and Methods: Thermoluminescent dosimeter rods (TLD rod: GR-200, Thermo Fisher Scientific Inc., Waltham, MA, USA) were placed at 25 sites throughout the layers of Male ART Head and Neck Phantom (Radiology Support Devices Inc., Long Beach, USA) for dosimetry. Implagraphy, DCT Pro (Vatech Co., Hwasung, Korea) units, SCT-6800TXL (Shimadzu Corp., Kyoto, Japan), and Crane x 3+(Soredex Orion Corp., Helsinki, Finland) were used for radiation exposures. Absorption doses were measured with Harshaw 3500TLD reader (Thermo Fisher Scientific Inc., Waltham, MA, USA). Radiation weighted doses and effective doses were measured and calculated by 2005 ICRP tissue weighting factors. Results: Absorbed doses in Rt. submandibular gland were 110.57 mGy for SCT 6800TXL (Implant), 24.56 mGy for SCT 6800TXL (3D), 22.39 mGy for Implagraphy 3, 7.19 mGy for DCT Pro, 5.96 mGy for Implagraphy 1, 0.70 mGy for Cranex 3+. Effective doses $(E_{2005draft)$ were 2.551 mSv for SCT 6800TXL (Implant), 1.272 mSv for SCT 6800TXL (3D), 0.598 mSv for Implagraphy 3, 0.428 mSv for DCT Pro and 0.146 mSv for Implagraphy 1. These are 108.6, 54.1, 25.5, 18.2 and 6.2 times greater than panoramic examination (Cranex 3+) doses (0.023mSv). Conclusion: Cone beam CT machines recently developed in Korea, showed lower effective doses than conventional CT. Cone beam CT provides a lower dose and cost alternative to conventional CT, promising to revolutionize the practice of oral and maxillofacial radiology.

  • PDF

Value of imaging study in predicting pelvic lymph node metastases of uterine cervical cancer

  • Jung, Wonguen;Park, Kyung Ran;Lee, Kyung-Ja;Kim, Kyubo;Lee, Jihae;Jeong, Songmi;Kim, Yi-Jun;Kim, Jiyoung;Yoon, Hai-Jeon;Kang, Byung-Chul;Koo, Hae Soo;Sung, Sun Hee;Cho, Min-Sun;Park, Sanghui
    • Radiation Oncology Journal
    • /
    • v.35 no.4
    • /
    • pp.340-348
    • /
    • 2017
  • Purpose: To evaluate the diagnostic accuracy of computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography/computed tomography (PET/CT) in predicting pelvic lymph node (LN) metastases in patients with cervical cancer. Materials and Methods: From January 2009 to March 2015, 114 patients with FIGO stage IA1-IIB uterine cervical cancer who underwent hysterectomy with pelvic lymphadenectomy and took CT, MRI, and PET/CT before surgery were enrolled in this study. The criteria for LN metastases were a LN diameter ${\geq}1.0cm$ and/or the presence of central necrosis on CT, a LN diameter ${\geq}1.0cm$ on MRI, and a focally increased FDG uptake on PET/CT. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for pelvic LN metastases were estimated. Results: The sensitivity, specificity, PPV, NPV, and accuracy for detection of pelvic LN metastases were 51.4%, 85.9%, 41.3%, 90.1%, and 80.3% for CT; 24.3%, 96.3%, 56.3%, 86.8%, and 84.6% for MRI; and 48.6%, 89.5%, 47.4%, 90.0%, and 82.9% for PET/CT, respectively. The sensitivity of PET/CT and CT was higher than that of MRI (p=0.004 and p= 0.013, respectively). The specificity of MRI was higher than those of PET/CT and CT (p=0.002 and p=0.001, respectively). The difference of specificity between PET/CT and CT was not statistically significant (p=0.167). Conclusion: These results indicate that preoperative CT, MRI, and PET/CT showed low to moderate sensitivity and PPV, and moderate to high specificity, NPV, and accuracy. More efforts are necessary to improve sensitivity of imaging modalities in order to predict pelvic LN metastases.

Comparison of Volumes between Four-Dimensional Computed Tomography and Cone-Beam Computed Tomography Images using Dynamic Phantom (호흡동조전산화단층촬영과 콘빔전산화단층촬영의 팬텀 영상 체적비교)

  • Kim, Seong-Eun;Won, Hui-Su;Hong, Joo-Wan;Chang, Nam-Jun;Jung, Woo-Hyun;Choi, Byeong-Don
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.123-130
    • /
    • 2016
  • Purpose : The aim of this study was to compare the differences between the volumes acquired with four-dimensional computed tomography (4DCT)images with a reconstruction image-filtering algorithm and cone-beam computed tomography (CBCT) images with dynamic phantom. Materials and Methods : The 4DCT images were obtained from the computerized imaging reference systems (CIRS) phantom using a computed tomography (CT) simulator. We analyzed the volumes for maximum intensity projection (MIP), minimum intensity projection (MinIP) and average intensity projection (AVG) of the images obtained with the 4DCT scanner against those acquired from CBCT images with CT ranger tools. Results : Difference in volume for node of 1, 2 and 3 cm between CBCT and 4DCT was 0.54~2.33, 5.16~8.06, 9.03~20.11 ml in MIP, respectively, 0.00~1.48, 0.00~8.47, 1.42~24.85 ml in MinIP, respectively and 0.00~1.17, 0.00~2.19, 0.04~3.35 ml in AVG, respectively. Conclusion : After a comparative analysis of the volumes for each nodal size, it was apparent that the CBCT images were similar to the AVG images acquired using 4DCT.

  • PDF

Differential diagnosis between odontogenic keratocyst and ameloblastoma by computed tomography (전산화단층사진을 이용한 치성각화낭과 법랑모세포종의 감별진단)

  • Eun Sang-A;Kim Kee-Deog;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.32 no.2
    • /
    • pp.89-97
    • /
    • 2002
  • Purpose: The objective of this study is to find the differentiating characteristics of ameloblastomas and odontogenic keratocysts of the jaw by analyzing computed tomography (CT) images of the lesions, clarify radiological characteristics associated with jaw lesions, and to make a diagnsis based on these findings. Materials and Methods : Test subjects were chosen among the patients who were diagnosed as having an odontogenic keratocyst or ameloblastoma at the Yonsei University Dental Hospital from January 1996 to December 2000 and had CT scans taken preoperatively. The subject pool was comprised of 51 cases of odontogenic keratocyst and 37 cases of ameloblastoma. The following measures were used for image analysis of the lesion: the anatomic location, CT pattern, mesiodistal width, buccolingual width, the ratios between mesiodistal width and buccolingual width, height, CT number, homogeneity of radiodensity, the appearance of a sclerotic rim, continuity of adjacent cortical bone, and displacement and resorption of adjacent teeth. Results: Comparing the CT patten, mesiodistal width, buccolingual width, height, CT number, homogeneity, appearance of sclerotic rim, continuity of adjacent cortical bone, there were statistically significant differences between ameloblastoma and odontogenic keratocyst test subjects (p<0.05). Comparing the ratios between mesiodistal width and buccolingual width, displacement and resorption of adjacent teeth, there were no statistically significant differences (p>0.05). Conclusion: We compared odontogenic keratocysts and ameloblastomas in CT scans. They occurred most frequently in the posterior to the ramus of the mandible. The findings of patterns of the CT images showed that size and border of lesions were more aggressive in ameloblastomas than in odontogenic keratocysts. The internal contents represented an increased attenuation area (IAA) in odontopenic keratocyst. Odontogenic keratocysts were shown to have higher CT numbers than ameloblastomas.

  • PDF

Radiation Dose from Computed Tomography Scans for Korean Pediatric and Adult Patients

  • Won, Tristan;Lee, Ae-Kyoung;Choi, Hyung-do;Lee, Choonsik
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.98-105
    • /
    • 2021
  • Background: In recent events of the coronavirus disease 2019 (COVID-19) pandemic, computed tomography (CT) scans are being globally used as a complement to the reverse-transcription polymerase chain reaction (RT-PCR) tests. It will be important to be aware of major organ dose levels, which are more relevant quantity to derive potential long-term adverse effect, for Korean pediatric and adult patients undergoing CT for COVID-19. Materials and Methods: We calculated organ dose conversion coefficients for Korean pediatric and adult CT patients directly from Korean pediatric and adult computational phantoms combined with Monte Carlo radiation transport techniques. We then estimated major organ doses delivered to the Korean child and adult patients undergoing CT for COVID-19 combining the dose conversion coefficients and the international survey data. We also compared our Korean dose conversion coefficients with those from Caucasian reference pediatric and adult phantoms. Results and Discussion: Based on the dose conversion coefficients we established in this study and the international survey data of COVID-19-related CT scans, we found that Korean 7-year-old child and adult males may receive about 4-32 mGy and 3-21 mGy of lung dose, respectively. We learned that the lung dose conversion coefficient for the Korean child phantom was up to 1.5-fold greater than that for the Korean adult phantom. We also found no substantial difference in dose conversion coefficients between Korean and Caucasian phantoms. Conclusion: We estimated radiation dose delivered to the Korean child and adult phantoms undergoing COVID-19-related CT examinations. The dose conversion coefficients derived for different CT scan types can be also used universally for other dosimetry studies concerning Korean CT scans. We also confirmed that the Caucasian-based CT organ dose calculation tools may be used for the Korean population with reasonable accuracy.

Effects of Implementing Artificial Intelligence-Based Computer-Aided Detection for Chest Radiographs in Daily Practice on the Rate of Referral to Chest Computed Tomography in Pulmonology Outpatient Clinic

  • Wonju Hong;Eui Jin Hwang;Chang Min Park;Jin Mo Goo
    • Korean Journal of Radiology
    • /
    • v.24 no.9
    • /
    • pp.890-902
    • /
    • 2023
  • Objective: The clinical impact of artificial intelligence-based computer-aided detection (AI-CAD) beyond diagnostic accuracy remains uncertain. We aimed to investigate the influence of the clinical implementation of AI-CAD for chest radiograph (CR) interpretation in daily practice on the rate of referral for chest computed tomography (CT). Materials and Methods: AI-CAD was implemented in clinical practice at the Seoul National University Hospital. CRs obtained from patients who visited the pulmonology outpatient clinics before (January-December 2019) and after (January-December 2020) implementation were included in this study. After implementation, the referring pulmonologist requested CRs with or without AI-CAD analysis. We conducted multivariable logistic regression analyses to evaluate the associations between using AI-CAD and the following study outcomes: the rate of chest CT referral, defined as request and actual acquisition of chest CT within 30 days after CR acquisition, and the CT referral rates separately for subsequent positive and negative CT results. Multivariable analyses included various covariates such as patient age and sex, time of CR acquisition (before versus after AI-CAD implementation), referring pulmonologist, nature of the CR examination (baseline versus follow-up examination), and radiology reports presence at the time of the pulmonology visit. Results: A total of 28546 CRs from 14565 patients (mean age: 67 years; 7130 males) and 25888 CRs from 12929 patients (mean age: 67 years; 6435 males) before and after AI-CAD implementation were included. The use of AI-CAD was independently associated with increased chest CT referrals (odds ratio [OR], 1.33; P = 0.008) and referrals with subsequent negative chest CT results (OR, 1.46; P = 0.005). Meanwhile, referrals with positive chest CT results were not significantly associated with AI-CAD use (OR, 1.08; P = 0.647). Conclusion: The use of AI-CAD for CR interpretation in pulmonology outpatients was independently associated with an increased frequency of overall referrals for chest CT scans and referrals with subsequent negative results.

Is There a Need for Conventional Spine Radiographs Following a Negative Chest and Abdominal CT in Trauma Patients? (흉, 복부 전산화 단층촬영이 정상인 외상 환자에게 척추 단순촬영이 필요한가?)

  • Oh, Sung Chan
    • Journal of Trauma and Injury
    • /
    • v.22 no.1
    • /
    • pp.24-28
    • /
    • 2009
  • Purpose: This was conducted to assess the need for conventional radiographs of the thoracolumbar spine for routine screening of trauma patients who revealed no spinal trauma on chest and abdominal computed tomography (CT). Methods: We performed a retrospective review of the medical records of trauma patients who underwent conventional radiographs of the thoracolumbar spine following a chest and abdominal CT that revealed no spinal trauma. Results: Two hundred seventy-five trauma patients underwent conventional radiographs of the thoracolumbar spine following a chest and abdominal CT that revealed no spinal trauma. In 274 of the cases, the thoracolumbar spine series was also negative. Conclusion: CT of the chest and abdomen is an adequate evaluation of the thoracolumbar spine in trauma patients who require routine thoracolumbar spine screening, making subsequent conventional radiographs of the thoracolumbar spine unnecessary.

Impact of Photon-Counting Detector Computed Tomography on Image Quality and Radiation Dose in Patients With Multiple Myeloma

  • Alexander Rau;Jakob Neubauer;Laetitia Taleb;Thomas Stein;Till Schuermann;Stephan Rau;Sebastian Faby;Sina Wenger;Monika Engelhardt;Fabian Bamberg;Jakob Weiss
    • Korean Journal of Radiology
    • /
    • v.24 no.10
    • /
    • pp.1006-1016
    • /
    • 2023
  • Objective: Computed tomography (CT) is an established method for the diagnosis, staging, and treatment of multiple myeloma. Here, we investigated the potential of photon-counting detector computed tomography (PCD-CT) in terms of image quality, diagnostic confidence, and radiation dose compared with energy-integrating detector CT (EID-CT). Materials and Methods: In this prospective study, patients with known multiple myeloma underwent clinically indicated whole-body PCD-CT. The image quality of PCD-CT was assessed qualitatively by three independent radiologists for overall image quality, edge sharpness, image noise, lesion conspicuity, and diagnostic confidence using a 5-point Likert scale (5 = excellent), and quantitatively for signal homogeneity using the coefficient of variation (CV) of Hounsfield Units (HU) values and modulation transfer function (MTF) via the full width at half maximum (FWHM) in the frequency space. The results were compared with those of the current clinical standard EID-CT protocols as controls. Additionally, the radiation dose (CTDIvol) was determined. Results: We enrolled 35 patients with multiple myeloma (mean age 69.8 ± 9.1 years; 18 [51%] males). Qualitative image analysis revealed superior scores (median [interquartile range]) for PCD-CT regarding overall image quality (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), edge sharpness (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), image noise (4.0 [4.0-4.0] vs. 3.0 [3.0-4.0]), lesion conspicuity (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), and diagnostic confidence (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]) compared with EID-CT (P ≤ 0.004). In quantitative image analyses, PCD-CT compared with EID-CT revealed a substantially lower FWHM (2.89 vs. 25.68 cy/pixel) and a significantly more homogeneous signal (mean CV ± standard deviation [SD], 0.99 ± 0.65 vs. 1.66 ± 0.5; P < 0.001) at a significantly lower radiation dose (mean CTDIvol ± SD, 3.33 ± 0.82 vs. 7.19 ± 3.57 mGy; P < 0.001). Conclusion: Whole-body PCD-CT provides significantly higher subjective and objective image quality at significantly reduced radiation doses than the current clinical standard EID-CT protocols, along with readily available multi-spectral data, facilitating the potential for further advanced post-processing.

Diagnostic Performance of On-Site Automatic Coronary Computed Tomography Angiography-Derived Fractional Flow Reserve

  • Doyeon Hwang;Sang-Hyeon Park;Chang-Wook Nam;Joon-Hyung Doh;Hyun Kuk Kim;Yongcheol Kim;Eun Ju Chun;Bon-Kwon Koo
    • Korean Circulation Journal
    • /
    • v.54 no.7
    • /
    • pp.382-394
    • /
    • 2024
  • Background and Objectives: Fractional flow reserve (FFR) is an invasive standard method to identify ischemia-causing coronary artery disease (CAD). With the advancement of technology, FFR can be noninvasively computed from coronary computed tomography angiography (CCTA). Recently, a novel simpler method has been developed to calculate onsite CCTA-derived FFR (CT-FFR) with a commercially available workstation. Methods: A total of 319 CAD patients who underwent CCTA, invasive coronary angiography, and FFR measurement were included. The primary outcome was the accuracy of CT-FFR for defining myocardial ischemia evaluated with an invasive FFR as a reference. The presence of ischemia was defined as FFR ≤0.80. Anatomical obstructive stenosis was defined as diameter stenosis on CCTA ≥50%, and the diagnostic performance of CT-FFR and CCTA stenosis for ischemia was compared. Results: Among participants (mean age 64.7±9.4 years, male 77.7%), mean FFR was 0.82±0.10, and 126 (39.5%) patients had an invasive FFR value of ≤0.80. The diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of CT-FFR were 80.6% (95% confidence interval [CI], 80.5-80.7%), 88.1% (95% CI, 82.4-93.7%), 75.6% (95% CI, 69.6-81.7%), 70.3% (95% CI, 63.1-77.4%), and 90.7% (95% CI, 86.2-95.2%), respectively. CT-FFR had higher diagnostic accuracy (80.6% vs. 59.1%, p<0.001) and discriminant ability (area under the curve from receiver operating characteristic curve 0.86 vs. 0.64, p<0.001), compared with anatomical obstructive stenosis on CCTA. Conclusions: This novel CT-FFR obtained from an on-site workstation demonstrated clinically acceptable diagnostic performance and provided better diagnostic accuracy and discriminant ability for identifying hemodynamically significant lesions than CCTA alone.

Oral contrast media for computed tomography of canine pancreas

  • Choi, Jihye;Chang, Jinhwa;Oh, Sunkyoung;Yoon, Junghee
    • Korean Journal of Veterinary Research
    • /
    • v.51 no.2
    • /
    • pp.165-169
    • /
    • 2011
  • Barium suspension, oral iodine contrast medium and water were applied in eight dogs to evaluate (1) distension of gastrointestinal tract, (2) the effect of the oral contrast media on the identification of the pancreas from surrounding organs, and (3) image quality and the presence of artifacts in canine pancreas computed tomography (CT) images. Oral iodine contrast medium, gastrografin, produced significant artifacts that deteriorated the CT images of the pancreas. The use of water did not provide the fullness of the gastrointestinal lumens. Barium suspension was effective for the identification of the pancreas from the surrounding gastrointestinal tract, without significantly increasing image noise. Barium suspension can be used as an optimal contrast medium that will not cause an adverse effect on the pancreatic density and image quality.