• Title/Summary/Keyword: computed

Search Result 12,209, Processing Time 0.035 seconds

Comparison of conventional imaging techniques and CBCT for periodontal evaluation: A systematic review

  • Choi, Isabela Goulart Gil;Cortes, Arthur Rodriguez Gonzalez;Arita, Emiko Saito;Georgetti, Marco Antonio Pauperio
    • Imaging Science in Dentistry
    • /
    • v.48 no.2
    • /
    • pp.79-86
    • /
    • 2018
  • Purpose: This study aimed to carry out a systematic review of studies in the literature comparing conventional imaging techniques with cone-beam computed tomography in terms of the role of these techniques for assessing any of the following periodontal conditions and parameters: infrabony defects, furcation involvement, height of the alveolar bone crest, and the periodontal ligament space. Materials and Methods: Interventional and observational studies comparing conventional imaging techniques with cone-beam computed tomography were considered eligible for inclusion. The MEDLINE and Embase databases were searched for articles published through 2017. The PRISMA statement was followed during data assessment and extraction. Results: The search strategy yielded 351 publications. An initial screening of the publications was performed using abstracts and key words, and after the application of exclusion criteria, 13 studies were finally identified as eligible for review. Conclusion: These studies revealed cone-beam computed tomography to be the best imaging technique to assess infrabony defects, furcation lesions, the height of the alveolar bone crest, and the periodontal ligament space.

Coronary Artery Stenosis Quantification for Computed Tomography Angiography Based on Modified Student's t-Mixture Model

  • Sun, Qiaoyu;Yang, Guanyu;Shu, Huazhong;Shi, Daming
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.662-671
    • /
    • 2017
  • Coronary artery disease (CAD) is a major cause of death in the world. As a non-invasive imaging modality, computed tomography angiography (CTA) is now usually used in clinical practice for CAD diagnosis. Precise quantification of coronary stenosis is of great interest for diagnosis and treatment planning. In this paper, a novel cluster method based on a Modified Student's t-Mixture Model is applied to separate the region of vessel lumen from other tissues. Then, the area of the vessel lumen in each slice is computed and the estimated value of it is fitted with a curve. Finally, the location and the level of the most stenoses are captured by comparing the calculated and fitted areas of the vessel. The proposed method has been applied to 17 clinical CTA datasets and the results have been compared with reference standard degrees of stenosis defined by an expert. The results of the experiment indicate that the proposed method can accurately quantify the stenosis of the coronary artery in CTA.

Absorbed and effective dose from newly developed cone beam computed tomography in Korea (최근 개발된 cone beam computed tomography의 흡수선량 및 유효선량 평가)

  • Lee, Jong-Nyeong;Han, Won-Jeong;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.37 no.2
    • /
    • pp.93-102
    • /
    • 2007
  • Purpose: Cone beam computed tomography (CBCT) provides a lower dose and cost alternative to conventional CT, promising to revolutionize the practice of oral and maxillofacial radiology. The purpose of this study was to evaluate the absorbed and effective doses of Implagraphy and VCT (Vatech Co., Hwasung, Korea) and compare them with those of panoramic radiography. Materials and Methods: Thermoluminescent dosimeter (TLD) chips were placed at 27 sites throughout the layers of Female ART Head and Neck Phantom for dosimetry. Implagraphy, VCT units, and Planmeca Proline XC panoramic unit were used for radiation exposures. Radiation weighted doses and effective doses were measured and calculated using 1990 and 2005 ICRP tissue weighting factors. Results: Effective doses in Sv (ICRP 2005, ICRP 1990) were 90.19, 61.62 for Implagraphy at maxillay molar area, 123.20, 90.02 for Implagraphy at mandibular molar area, 183.55, 139.26 for VCT and 40.92, 27.16 for panoramic radiography. Conclusion: Effective doses for VCT and Implagraphy were only about 2.2 to 4.5 times greater than those for panoramic radiography. VCT and Implagraphy, CBCT machines recently developed in Korea, showed moderately low effective doses.

  • PDF

Computed Tomographic Features of Saccular Type of Bronchiectasis in a Dog (개에서 발생한 낭상 기관지 확장증에 대한 컴퓨터단층촬영 소견 1례)

  • Choi, Sooyoung;Seo, Jiwon;Park, Hyunyoung;Lee, Youngwon;Choi, Hojung
    • Journal of Veterinary Clinics
    • /
    • v.32 no.6
    • /
    • pp.523-526
    • /
    • 2015
  • A 9-year-old, castrated male Malamute dog was presented with chronic cough. On thoracic computed tomography, non-tapered and dilated peripheral bronchi were detected. Bronchoarterial ratio was about 2.2. The dilated bronchi appeared as a cluster of grapes especially in left cranial, left caudal and right middle lung lobe. Based on the computed tomographic findings, the diagnosis was made as the saccular type of bronchiectasis.

A Model Predictive Tracking Control Algorithm of Autonomous Truck Based on Object State Estimation Using Extended Kalman Filter (확장 칼만 필터를 이용한 대상 상태 추정 기반 자율주행 대차의 모델 예측 추종 제어 알고리즘)

  • Song, Taejun;Lee, Hyewon;Oh, Kwangseok
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.22-29
    • /
    • 2019
  • This study presented a model predictive tracking control algorithm of autonomous truck based on object state estimation using extended Kalman filter. To design the model, the 1-layer laser scanner was used to estimate position and velocity of the object using extended Kalman filter. Based on these estimations, the desired linear path for object tracking was computed. The lateral and yaw angle errors were computed using the computed linear path and relative positions of the truck. The computed errors were used in the model predictive control algorithm to compute the optimal steering angle for object tracking. The performance evaluation was conducted on Matlab/Simulink environments using planar truck model and actual point data obtained from laser scanner. The evaluation results showed that the tracking control algorithm developed in this study can track the object reasonably based on the model predictive control algorithm based on the estimated states.

A new minimally invasive guided endodontic microsurgery by cone beam computed tomography and 3-dimensional printing technology

  • Kim, Jong-Eun;Shim, June-Sung;Shin, Yooseok
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.3
    • /
    • pp.29.1-29.7
    • /
    • 2019
  • Endodontic microsurgery is defined as the treatment performed on the root apices of an infected tooth, which was unresolved with conventional root canal therapy. Recently, the advanced technology in 3-dimensional model reconstruction based on computed tomography such as cone beam computed tomography has opened a new avenue in application of personalized, accurate diagnosis and has been increasingly used in the field of dentistry. Nevertheless, direct intra-oral localization of root apex based on the 3-dimensional information is extremely difficult and significant amount of bone removal is inevitable when freehand surgical procedure was employed. Moreover, gingival flap and alveolar bone fenestration are usually required, which leads to prolonged time of surgery, thereby increasing the chance of trauma as well as the risk of infection. The purpose of this case report is to present endodontic microsurgery using the guide template that can accurately target the position of apex for the treatment of an anterior tooth with calcified canal which was untreatable with conventional root canal therapy and unable to track the position of the apex due to the absence of fistula.

Very deep super-resolution for efficient cone-beam computed tomographic image restoration

  • Hwang, Jae Joon;Jung, Yun-Hoa;Cho, Bong-Hae;Heo, Min-Suk
    • Imaging Science in Dentistry
    • /
    • v.50 no.4
    • /
    • pp.331-337
    • /
    • 2020
  • Purpose: As cone-beam computed tomography (CBCT) has become the most widely used 3-dimensional (3D) imaging modality in the dental field, storage space and costs for large-capacity data have become an important issue. Therefore, if 3D data can be stored at a clinically acceptable compression rate, the burden in terms of storage space and cost can be reduced and data can be managed more efficiently. In this study, a deep learning network for super-resolution was tested to restore compressed virtual CBCT images. Materials and Methods: Virtual CBCT image data were created with a publicly available online dataset (CQ500) of multidetector computed tomography images using CBCT reconstruction software (TIGRE). A very deep super-resolution (VDSR) network was trained to restore high-resolution virtual CBCT images from the low-resolution virtual CBCT images. Results: The images reconstructed by VDSR showed better image quality than bicubic interpolation in restored images at various scale ratios. The highest scale ratio with clinically acceptable reconstruction accuracy using VDSR was 2.1. Conclusion: VDSR showed promising restoration accuracy in this study. In the future, it will be necessary to experiment with new deep learning algorithms and large-scale data for clinical application of this technology.

Comparative Analysis of Death-Related Iodide Contrast Media due to Adverse Reactions of Contrast Media in Computed Tomography (컴퓨터단층촬영의 요오드화 조영제 부작용으로 인한 사망 관련 조영제 비교 분석)

  • Yu, Seong-Min;Han, Dong-Kyoon;Hong, Joo-Wan
    • Journal of radiological science and technology
    • /
    • v.44 no.1
    • /
    • pp.47-52
    • /
    • 2021
  • The incidence of adverse reactions to iodide contrast media was found to have increased owing to their increased use in computed tomography, but the exact reasons were unknown. Based on reported iodide contrast media adverse reactions data, it is recommended to the components of iodide contrast media before use to minimize adverse reactions. It was found that the use of iopromide and iomeprol in iodide contrast media resulted in a higher incidences of death and threat of life resulting from adverse reactions than other ingredients. Patients who are administered iodide contrast media containing iopromide and iomeprol during the computed tomography test should be carefully examined by the relevant medical professional, as the significance of gender and age varies from component to component. As multiple iodide contrast agents are available, the use of an appropriate iodide contrast media will reduce the incidence of iodide contrast media adverse reactions.

Synthetic Computed Tomography Generation while Preserving Metallic Markers for Three-Dimensional Intracavitary Radiotherapy: Preliminary Study

  • Jin, Hyeongmin;Kang, Seonghee;Kang, Hyun-Cheol;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.172-178
    • /
    • 2021
  • Purpose: This study aimed to develop a deep learning architecture combining two task models to generate synthetic computed tomography (sCT) images from low-tesla magnetic resonance (MR) images to improve metallic marker visibility. Methods: Twenty-three patients with cervical cancer treated with intracavitary radiotherapy (ICR) were retrospectively enrolled, and images were acquired using both a computed tomography (CT) scanner and a low-tesla MR machine. The CT images were aligned to the corresponding MR images using a deformable registration, and the metallic dummy source markers were delineated using threshold-based segmentation followed by manual modification. The deformed CT (dCT), MR, and segmentation mask pairs were used for training and testing. The sCT generation model has a cascaded three-dimensional (3D) U-Net-based architecture that converts MR images to CT images and segments the metallic marker. The performance of the model was evaluated with intensity-based comparison metrics. Results: The proposed model with segmentation loss outperformed the 3D U-Net in terms of errors between the sCT and dCT. The structural similarity score difference was not significant. Conclusions: Our study shows the two-task-based deep learning models for generating the sCT images using low-tesla MR images for 3D ICR. This approach will be useful to the MR-only workflow in high-dose-rate brachytherapy.

Temporomandibular Joint Ankylosis Caused by Osteoarthritis: A Case Report Based on Cone Beam Computed Tomography Images

  • Jih, Myeong Kwan;Kim, Jin Soo;Park, Hyun-Jeong
    • Journal of Oral Medicine and Pain
    • /
    • v.47 no.3
    • /
    • pp.156-160
    • /
    • 2022
  • Temporomandibular joint (TMJ) ankylosis is a condition in which condylar movement is restricted because of fibrous or bony union between the mandibular condyle and temporal bone. TMJ ankylosis is most often caused by trauma, followed by systemic or local infection, and secondary to unknown causes. Diagnostic imaging plays a vital role in diagnosing TMJ ankylosis and establishing a treatment plan. Computed tomography (CT) or cone beam computed tomography (CBCT) is currently the imaging technique of choice to accurately demonstrate preoperative ankylosing masses and other surgically important findings, such as the shape of the mandibular condyle and the pathological changes in the joint. The osseous changes in the mandibular condyle are easily identified in the coronal and sagittal sections of CT or CBCT images. This report describes the case of a middle-aged woman who developed TMJ ankylosis of the left TMJ while undergoing repeated treatment for TMJ disease. We report the findings observed on radiographic and CBCT images through continuous observation.