• 제목/요약/키워드: computational fluids dynamics

검색결과 316건 처리시간 0.026초

실제 혈관 형상 및 혈액 특성을 고려한 경동맥 내 혈액 유동에 대한 수치해석 연구 (A NUMERICAL ANALYSIS ON BLOOD FLOOD FLOW INSIDE A CAROTID ARTERY WITH THE PATIENT SPECIFIC ARTERIAL GEOMETRY AND BLOOD RHEOLOGY DATA)

  • 이상혁;정슬기;허남건;조영일
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.224-227
    • /
    • 2010
  • In the present study, the characteristics of blood flow inside a carotid artery numerically investigated with shear rate specific blood viscosity. To simulate the blood flow with a patient-specific arterial geometry, the geometry of a carotid artery was constructed from 2D rain MRA data. The measured data of blood flow velocity at the common carotid artery were used as boundary conditions of the simulation. For the blood rheology data to be used in the simulation, the patient specific blood viscosity over the whole ranges of shear rate was obtained using $BioVisco^{TM}$. From the numerical results of the blood flow in the carotid artery, the increase of blood viscosity and the decrease of wall shear stress could be found in the carotid bifurcated region, more specifically at the post-plaque dilated region. These characteristics of blood viscosity and wall shear stress can be used more precisely and efficiently to predict the region vulnerable to plaque growht or thrombosis on top of the plaque.

  • PDF

TOWARD MECHANISTIC MODELING OF BOILING HEAT TRANSFER

  • Podowski, Michael Z.
    • Nuclear Engineering and Technology
    • /
    • 제44권8호
    • /
    • pp.889-896
    • /
    • 2012
  • Recent progress in the computational fluid dynamics methods of two- and multiphase phase flows has already started opening up new exciting possibilities for using complete multidimensional models to simulate boiling systems. Combining this new theoretical and computational approach with novel experimental methods should dramatically improve both our understanding of the physics of boiling and the predictive capabilities of models at various scale levels. However, for the multidimensional modeling framework to become an effective predictive tool, it must be complemented with accurate mechanistic closure laws of local boiling mechanisms. Boiling heat transfer has been studied quite extensively before. However, it turns out that the prevailing approach to the analysis of experimental data for both pool boiling and forced-convection boiling has been associated with formulating correlations which normally included several adjustable coefficients rather than based on first principle models of the underlying physical phenomena. One reason for this has been the tendency (driven by practical applications and industrial needs) to formulate single expressions which encompass a broad range of conditions and fluids. This, in turn, makes it difficult to identify various specific factors which can be independently modeled for different situations. The objective of this paper is to present a mechanistic modeling concept for both pool boiling and forced-convection boiling. The proposed approach is based on theoretical first-principle concepts, and uses a minimal number of coefficients which require calibration against experimental data. The proposed models have been validated against experimental data for water and parametrically tested. Model predictions are shown for a broad range of conditions.

Cactus PSE의 활용을 통한 전산유체역학 문제 해석 (CFD Analyses on Cactus PSE(Problem Solving Environment))

  • 고순흠;조금원;나정수;김영균;송영덕;김종암
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.47-50
    • /
    • 2005
  • The Grid'[1] means the collaboration of computing and experimental resources in dispersed organizations by high-speed network. It has been paid much attention for an unlimited number of potential resources available and the easiness to build collaborative environments among multiple disciplines. However, the difficulty in establishing the environments and accessing and utilizing the resources has prevented application scientists from conducting Grid computing. Thus, the present study focuses on building PSE(Problem Solving Environment) which assists application researchers to easily access and utilize the Grid. The Cactus toolkit, originally developed by astrophysicists, is used as a base frame for Grid PSE. Some modules are newly developed and modified for CFD(Computational Fluid Dynamics) analysis. Simultaneously, a web portal, Grid-One portal, is built for remote monitoring/control and job migration. Cactus frame through the web portal service has been applied to various CFD problems, demonstrating that the developed PSE is valuable for large-scaled applications on the Grid.

  • PDF

낸드플래시 메모리의 냉각효과에 관한 수치적 연구 (A Numerical Study of NAND Flash Memory on the cooling effect)

  • 김기준;구교욱;임효재;이혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.117-123
    • /
    • 2011
  • The low electric power and high efficiency chips are required because of the appearance of smart phones. Also, high-capacity memory chips are needed. e-MMC(embedded Multi-Media Card) for this is defined by JEDEC(Joint Electron Device Engineering Council). The e-MMC memory for research and development is a memory mulit-chip module of 64GB using 16-multilayers of 4GB NAND-flash memory. And it has simplified the chip by using SIP technique. But mulit-chip module generates high heat by higher integration. According to the result of study, whenever semiconductor chip is about 10 $^{\circ}C$ higher than the design temperature it makes the life of the chip shorten more than 50%. Therefore, it is required that we solve the problem of heating value and make the efficiency of e-MMC improved. In this study, geometry of 16-multilayered structure is compared the temperature distribution of four different geometries along the numerical analysis. As a result, it is con finned that a multilayer structure of stair type is more efficient than a multilayer structure of vertical type because a multi-layer structure of stair type is about 9 $^{\circ}C$ lower than a multilayer structure of vertical type.

  • PDF

회전톱 재단기의 미세먼지 집진효율 향상을 위한 형상 설계 개선 (Shape Design Improvement of the Rotary Cutting Machine to Improve the Dust Capturing Efficiency using CFD)

  • 김기희;이희남;전완호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.508-511
    • /
    • 2011
  • Dust released from the rotating timber cutting process causes various kinds of diseases as well as safety issues. Although there were lots of efforts to reduce the amount of dust by installing large-sized dust collectors or by using expensive high-quality cutters, they proved to be not so effective. In this study we want to modify and improve the design of the rotary cutter system to prevent dust from being released to the environment as possible by using computational fluid dynamics (CFD) analysis. We have developed CFD models of the conventional cutter and several design modifications. Through the CFD analysis the characteristics of the air flow was predicted, and then the behavior of dust produced during the cutting process was analyzed for different designs. The most efficient design feature to capture dust inside the cutter as much as possible was chosen based on the CFD analysis results. Finally the prototype of the ratary saw machine was constructed and tested to check the dust capturing efficiency, which result is reasonably consistent with the predicted performance through the CFD analysis.

  • PDF

CFD를 이용한 분지관.협착관의 비뉴턴 유체 해석 (The Numerical Analysis of Non-Newtonian Flow through Branched and Stenotic Tube)

  • 황도연;기민철;한병윤;박형구
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.385-388
    • /
    • 2008
  • The objective of this paper is simulating blood flow through the branched and stenotic tube numerically. SC-Tetra, which is one of the commercial code using FVM method, was utilized for this analysis. The flow is assumed as an incompressible laminar flow with the additional condition of non-Newtonian fluid. As the constitutive equation for the fluid viscosity, the following models were solved with governing equations ; Cross Model, Modified Cross Model, Carreau Model and Carreau-Yasuda Model. Final goal was achieved to get analytic data about shear stress, at specific points, changing the geometry with various factors like the bifurcation angle, diameter of the branches, the ratio of stenosis, and etc. The material property of blood was referred from the related papers. Furthermore, to verify results they were compared with those of the published papers. There were some discrepancies based on the different solver and the different data post-processing method. However, many parameters like the location of low shear stress, which arised from bifurcation or stenosis, and the tendency of various factors were found to be very similar.

  • PDF

An optimum design study of interlacing nozzle by using Computational Fluid Dynamics

  • Juraeva Makhsuda;Ryu Kyung-Jin;Kim Sang-Dug;Song Dong-Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.395-397
    • /
    • 2006
  • Air interlacing serves to protect the yarn against damage, strengthens inter-filament compactness or cohesion, and ensures fabric consistency. The air interlacing nozzle is used to introduce intermittent nips to a filament yarn so as to improve its performance in textile processing. The effect of various interlacing nozzle geometries on the interlacing process was studied. The geometries of interlacing nozzles with single or multiple air inlets located across the width of yarn channels are investigated. The basis case is the yarn channel, with a perpendicular main air inlet in the middle. Other cases have main air inlets, slightly inclined double sub air inlets, The yarn channel cross sectional shapes are either semicircular or rectangular shapes. The compressed impinging jet from the main air inlet hole hits the opposing bottom wall of the yarn channel, is divided into two branches, joins with the compressed air coming out from sub air inlet at the bottom and creates two free jets at both ends of the yarn channel. The compressed air movement in the cross-section consists of two opposing directional vortices. The CFD-FASTRAN flow parallel solver was used to perform steady simulations of impinging jet flow inside of the interlace nozzles. The vortical structure and the flow pattern such as pressure contour, particle traces, velocity vector plots inside of interlace nozzle geometry are discussed in this pater.

  • PDF

헬리콥터 로터 공력해석을 위한 수치적 방법 연구 (THE INVESTIGATION OF HELICOPTER ROTOR AERODYNAMIC ANALYSIS METHODS)

  • 박남은;우철훈;노현우;김철호;이석준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.120-124
    • /
    • 2007
  • Helicopters and rotary-wing vehicles encounter a wide variety of complex aerodynamic phenomena and these phenomena present substantial challenges for computational fluid dynamics(CFD) models. This investigation presents the rotor aerodynamic analysis items for the helicopter development and variety aerodynamic analysis methods to provide the better solution to researchers and helicopter developers between aerodynamic problems and numerical aerodynamic analysis methods. The numerical methods to make an analysis of helicopter rotor are as below - CFD Modelling : actuator disk model, BET model, fully rotor model,... - Grid : sliding mesh, chimera mesh / structure mesh, unstructure mesh,... - etc. : panel method periodic boundary, quasi-steady simulation, incompressible,... The choice of CFD methodology and the numerical resolution for the overall problem have been driven mostly by available computer speed and memory at any point in time. The combination of the knowledge of aerodynamic analysis items, available computing power and choice of CFD methods now allows the solution of a number of important rotorcraft aerodynamics design problems.

  • PDF

CAD 형상 데이터를 이용한 물체 표면 삼각형 격자의 자동 생성 기법 (AUTOMATED TRIANGULAR SURFACE GRID GENERATION ON CAD SURFACE DATA)

  • 이봉주;김병수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.103-107
    • /
    • 2007
  • Computational Fluid Dynamics (CFD in short) approach is now playing an important role in the engineering process recently. Generating proper grid system for the region of interest in time is prerequisite for the efficient numerical calculation of flow physics using CFD approach. Grid generation is, however, usually considered as a major obstacle for a routine and successful application of numerical approaches in the engineering process. CFD approach based on the unstructured grid system is gaining popularity due to its simplicity and efficiency for generating grid system compared to the structured grid approaches. In this paper an automated triangular surface grid generation using CAD surface data is proposed According to the present method, the CAD surface data imported in the STL format is processed to identify feature edges defining the topology and geometry of the surface shape first. When the feature edges are identified, node points along the edges are distributed. The initial fronts which connect those feature edge nodes are constructed and then they are advanced along the CAD surface data inward until the surface is fully covered by triangular surface grid cells using Advancing Front Method. It is found that this approach can be implemented in an automated way successfully saving man-hours and reducing human-errors in generating triangular surface grid system.

  • PDF

500kW급 풍력터빈의 성능평가에 관한 수치해석적 연구 (Estimate of the power characteristics of the 500kw wind turbine based on 3D numerical solutions)

  • 김범석;이진석;김정환;이도형;이영호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.140-145
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is to calculate and examine a 500 kW Horizontal Axis Wind Turbine (HAWT) power performance and compare to calculation data(BEM method) from Delft University. The experimental approach, which has been the main method of investigation, appears to be reaching its limits, the cost increasing relate with the size of wind turbines. Hence, the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes Solvers are considered a very serious contender. We has used the CFD software package CFX-TASC flow as a modeling tool to predict the power performance of a wind turbine on the basis of its geometry and operating data. The wind turbine with 40m diameters rotor, it was scaled to compare with the calculation data from delft university. The HAWT, which has eight-rpm variations are investigated respectively. The pitch angle is $+0.5^{\circ}$ and wind speed is fixed at 5m/s. The tip speed ratio (TSR) of the HAWT ranging from 2.89 to 9.63.

  • PDF