• 제목/요약/키워드: computational fluids dynamics

검색결과 316건 처리시간 0.022초

모터의 특성을 고려한 CFD 해석에 의한 축류홴 성능해석 (ANALYSIS ON CHARACTERISTICS OF AN AXIAL FLOW FAN THROUGH CFD ANALYSIS INCORPORATED WITH MOTOR CHARACTERISTICS)

  • 김주한;허남건;김욱
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.109-114
    • /
    • 2010
  • In a fan design, CFD analysis, which is very useful for mechanical design relating to the heat and fluid dynamics, is one of the most popular tools. However, since the CFD analysis is conventionally carried out with the constant fan speed condition, the speed change, induced by the air flow rate and motor characteristics, is hardly modeled. And, consequently, the remarkable difference exist between analysis and experimental results. In this paper, we has proposed a method of setting the varying fan speed as a boundary condition considering air flow rate and motor torque-speed characteristics. The effectiveness of the proposed method is verified by comparison with experimental results.

동축제트의 와류주파수 및 혼합특성에 대한 수치해석 (NUMERICAL STUDY ON THE CHARACTERISTICS OF VORTEX FREQUENCY AND LAMINAR MIXING OF A PASSIVE SCALAR IN COAXIAL JET FLOWS)

  • 김원현;박태선
    • 한국전산유체공학회지
    • /
    • 제14권3호
    • /
    • pp.49-55
    • /
    • 2009
  • This study focuses on the near-field vortical structure and dynamics of coaxial jets. The characteristics of laminar flow and mixing in coaxial jets are investigated using a unsteady flow simulation. In order to analyze the geometric effects on the vortical structure, several cases of different configurations are selected for various values of the velocity ratio of inner jet to outer jet. From the result, it is confirmed that the flow mixing is promoted by the development of vortical structure and the interaction between inner jet and outer jet. This feature is strongly related to the vortex frequency in the shear-layers. The vortex frequency depends on the velocity ratio and the lip thickness of inner nozzle, but the outer pipe length has no effect on the frequency variation.

극저온 가스와 MQL(minimum quantity lubrication)의 복합 분사를 위한 하이브리드 노즐 설계에 관한 전산유체역학 해석 (Analysis of computational fluid dynamics on design of nozzle for integrated cryogenic gas and MQL(minimum quantity lubrication))

  • 송기혁;신봉철;윤길상;하석재
    • Design & Manufacturing
    • /
    • 제13권3호
    • /
    • pp.41-47
    • /
    • 2019
  • In conventional machining, the use of cutting fluid is essential to reduce cutting heat and to improve machining quality. However, to increase the performance of cutting fluids, various chemical components have been added. However, these chemical components during machining have a negative impact on the health of workers and cutting environment. In current machining, environment-friendly machining is conducted using MQL (minimum quantity lubrication) or cryogenic air spraying to minimize the harmful effects. In this study, the injection nozzle that can combined injecting minimum quantity lubrication(MQL) and cryogenic gas was designed and the shape optimization was performed by using computational fluid dynamics(CFD) and design of experiment(DOE). Performance verification was performed for the designed nozzle. The diameter of the sprayed fluid at a distance of 30 mm from the nozzle was analyzed to be 21 mm. It was also analyzed to lower the aerosol temperature to about 260~270K.

관성관 맥동관 극저온 냉동기의 유동 특성 모델링 (MODELING ON FLOW CHARACTERISTICS OF INERTANCE PULSE TUBE CRYOCOOLER)

  • 한성현;이경환;최종욱;김재수
    • 한국전산유체공학회지
    • /
    • 제19권3호
    • /
    • pp.14-19
    • /
    • 2014
  • The flow characteristics of inertance pulse tube cryocooler(IPTC) was investigated with a computational thermal fluid dynamics for the reciprocating flow in IPTC including the piston movement of linear compressor. Two dimensional axisymmetric modeling was applied for the flow in an IPTC with a clearance between the piston and cylinder wall of linear compressor. The pressure, velocity, and temperature distribution were examined for the steady state. These were compared with previous results to confirm the validity in the modeling and computational results. The leakage between piston and cylinder wall affect the cooling capacity seriously. The dependence on mesh numbers were also examined to obtain a proper mesh numbers to improve the accuracy of calculation, which showed significant effect on the results. The user-defined function was used for the process of compression and expansion of piston.

유전 알고리즘과 인공 신경망 기법을 이용한 무인항공기 로터 블레이드 공력 최적설계 (AERODYNAMIC DESIGN OPTIMIZATION OF UAV ROTOR BLADES USING A GENETIC ALGORITHM AND ARTIFICIAL NEURAL NETWORKS)

  • 이학민;유재관;안상준;권오준
    • 한국전산유체공학회지
    • /
    • 제19권3호
    • /
    • pp.29-36
    • /
    • 2014
  • In the present study, an aerodynamic design optimization of UAV rotor blades was conducted using a genetic algorithm(GA) coupled with computational fluid dynamics(CFD). To reduce computational cost in making databases, a function approximation was applied using artificial neural networks(ANN) based on a radial basis function network. Three dimensional Reynolds-Averaged Navier-Stokes(RANS) solver was used to solve the flow around UAV rotor blades. Design directions were specified to maximize thrust coefficient maintaining torque coefficient and minimize torque coefficient maintaining thrust coefficient. Design variables such as twist angle, thickness and chord length were adopted to perform a planform optimization. As a result of an optimization regarding to maximizing thrust coefficient, thrust coefficient was increased about 4.5% than base configuration. In case of an optimization minimizing torque coefficient, torque coefficient was decreased about 7.4% comparing with base configuration.

NURBS를 이용한 S형 천음속 흡입관 최적 설계 (OPTIMAL SHAPE DESIGN OF A S-SHAPED SUBSONIC INTAKE USING NURBS)

  • 이병준;김종암
    • 한국전산유체공학회지
    • /
    • 제11권1호
    • /
    • pp.57-66
    • /
    • 2006
  • An optimal shape design approach is presented for a subsonic S-shaped intake using aerodynamic sensitivity analysis. Two-equation turbulence model is employed to capture strong counter vortices in the S-shaped duct more precisely. Sensitivity analysis is performed for the three-dimensional Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method For code validation, the result of the flow solver is compared with experiment data and other computational results of bench marking test. To study the influence oj turbulence models and grid refinement on the duct flow analysis, the results from several turbulence models are compared with one another and the minimum number of grid points, which can yield an accurate solution is investigated The adjoint variable code is validated by comparing the complex step derivative results. To realize a sufficient and flexible design space, NURBS equations are introduced as a geometric representation and a new grid modification technique, Least Square NURBS Grid Approximation is applied With the verified flow solver, the sensitivity analysis code and the geometric modification technique, the optimization of S-shaped intake is carried out and the enhancement of overall intake performance is achieved The designed S-shaped duct is tested in several off-design conditions to confirm the robustness of the current design approach. As a result, the capability and the efficiency of the present design tools are successfully demonstrated in three-dimensional highly turbulent internal flow design and off-design conditions.

Vortex Tube 성능 개선을 위한 절두체의 형상 매개변수에 대한 연구 (A PARAMETRIC STUDY OF CONICAL FRUSTUM GEOMETRY FOR IMPROVEMENT OF COOLING PERFORMANCE OF VORTEX TUBE)

  • 구한범;박준용;손덕영;최윤호
    • 한국전산유체공학회지
    • /
    • 제20권4호
    • /
    • pp.7-13
    • /
    • 2015
  • Vortex tube is a thermal static device that separates compressed air into hot and cold streams. In general, the cooling efficiency of vortex tubes is lower than that of traditional air conditioning equipment and vortex tubes are mainly used for industrial spot cooling applications because of their quick responses. In this study, conical frustums are employed in the nozzle chamber to improve the cooling performance. Conical frustums can be used to decrease the ineffective mass fraction that directly passes through the cold exit without energy separation. The shape optimization of conical frustums has been performed using full factorial design. It is found that the height of frustums has the largest main effects on the cooling performance. Computational results show that the cooling performance can be increased by about 10% within the considered range of the design parameters. This is because the ineffective mass fraction toward the cold exit is decreased by about 20%.

1 kW급 LNG 스털링 엔진 연소실 수치해석 (CFD STUDY ON THE COMBUSTION CHAMBER OF A 1 kW CLASS STIRLING ENGINE)

  • 안준;이윤식;김혁주
    • 한국전산유체공학회지
    • /
    • 제16권3호
    • /
    • pp.88-94
    • /
    • 2011
  • The availability of the thermal energy has been deeply recognized recently to encourage the cascade usage of thermal energy from combustion. Within the framework, a 1 kW class Stirling engine based cogeneration system has been proposed for a unit of a distributed energy system. The capacity has been designed to be adequate for the domestic usage, which requires high compactness as well as low emission and noise. To develop a highly efficient system with satisfying these requirements, a premixed slot type short flame burner has been proposed and a series of numerical simulation has been performed to establish a design tool for the combustion chamber. The thermal radiation model has been found to highly affect the computational results and a proper resolution to analyze the heat transfer characteristics of the high temperature heat exchanger. Finally, the combustion characteristics of the premixed flame with the metal fiber type burner has been studied.

극저온 유체 화물창 방벽 내의 액체유동 및 기화 시뮬레이션 (LIQUID FLOW AND EVAPORATION SIMULATION OF CRYOGENIC FLUID IN THE WALL OF CRYOGENIC FLUID CARGO CONTAINMENT SYSTEM)

  • 박범진;이희범;이신형;배준홍;이경원;정왕조;안상준
    • 한국전산유체공학회지
    • /
    • 제14권2호
    • /
    • pp.9-18
    • /
    • 2009
  • The cargo containment system (CCS) for ships carrying cryogenic fluid consists of at least two levels of barriers and insulation layers. It is because, even though there is a small amount of leak through the primary barrier, the liquid tight secondary barrier blocks further leakage of the cryogenic fluid. However, once the secondary barrier is damaged, it is highly possible that the leaked cryogenic fluid flows through the flat joint made of glass wool and reaches the inner hull of the ship. The primary objective of the present study is to investigate the influence of the damage extent in the secondary barrier on the amount of leaked cryogenic fluid reaching the inner hull and the temperature distribution there. Simulation results using a computational fluid dynamics tool were compared with the experimental data for the leaked cryogenic fluid flow and evaporation in the secondary insulation layer. The experimental and computational results suggest that, unless there is a massive leak, the cryogenic fluid mostly evaporates in the insulation layer and does not reach the inner hull in the state of liquid.

몬주 고속증식로 상부플레넘에서의 열성층에 관한 전산유체역학 해석 (COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF THERMAL STRATIFICATION IN THE UPPER PLENUM OF THE MONJU FAST BREEDER REACTOR)

  • 최석기;이태호
    • 한국전산유체공학회지
    • /
    • 제17권4호
    • /
    • pp.41-48
    • /
    • 2012
  • A numerical analysis of thermal stratification in the upper plenum of the MONJU fast breeder reactor was performed. Calculations were performed for a 1/6 simplified model of the MONJU reactor using the commercial code, CFX-13. To better resolve the geometrically complex upper core structure of the MONJU reactor, the porous media approach was adopted for the simulation. First, a steady state solution was obtained and the transient solutions were then obtained for the turbine trip test conducted in December 1995. The time dependent inlet conditions for the mass flow rate and temperature were provided by JAEA. Good agreement with the experimental data was observed for steady state solution. The numerical solution of the transient analysis shows the formation of thermal stratification within the upper plenum of the reactor vessel during the turbine trip test. The temporal variations of temperature were predicted accurately by the present method in the initial rapid coastdown period (~300 seconds). However, transient numerical solutions show a faster thermal mixing than that observed in the experiment after the initial coastdown period. A nearly homogenization of the temperature field in the upper plenum is predicted after about 900 seconds, which is a much shorter-term thermal stratification than the experimental data indicates. This discrepancy is due to the shortcoming of the turbulence models available in the CFX-13 code for a natural convection flow with thermal stratification.