• Title/Summary/Keyword: computational fluid flow analysis

Search Result 1,267, Processing Time 0.028 seconds

Nonlinear Characteristics of Flow Separation Induced Vibration at Low-Speed Using Coupled CSD and CFD technique (전산구조진동/전산유체 기법을 연계한 저속 유동박리 유발 비선형 진동특성 연구)

  • Kim, Dong-Hyun;Chang, Tae-Jin;Kwon, Hyuk-Jun;Lee, In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.140-146
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of a 2-D.O.F airfoil system have been investigated in low Reynolds number incompressible flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-stokes code. To validate developed Navier-Stokes code, steady and unsteady flow fields around airfoil are analyzed. The present fluid/structure interaction analysis is based on the most accurate computational approach with computational fluid dynamics (CSD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed fur the low Reynolds region (R$_{N}$ =500~5000) that has a dominancy of flow viscosity. The effect of R$_{N}$ on the fluid/structure coupled vibration instability of 2-DOF airfoil system is presented and the effect of initial angle of attack on the dynamic instability are also shown.own.

  • PDF

Thermal Fluid Flow Analysis for Temperature Characterization of Mold Transformer in Distribution Power System (배전용 몰드변압기의 온도특성 파악을 위한 열유동해석)

  • Kim, Ji-Ho;Lee, Jeong-Gun;Lee, Ki-Sik;Rhee, Wook;Lee, Hyang-Beom
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.1
    • /
    • pp.6-11
    • /
    • 2013
  • In this paper, the temperature characteristics of mold transformer for the distribution power system have been analyzed by using computational fluid dynamics(CFD). The model has been modeled by coil, cores, insulating materials and frames about 3MVA grade mold transformer and analyzed the temperature distribution of the structure with a heat fluid. The fluid, which is incompressible ideal gas, is analyzed as a turbulent flow phenomenon on the assumption that it is natural cooling of transformer cooling system. Through this study, by examining the temperature distribution and hot-spot of the structure field of the mold transformer, cooling design and temperature distribution information, which are demanded for designing are estimated.

Optimization of Hydraulic Bifurcation by Computational Fluid Dynamics (전산해석기법을 이용한 수압분기관의 최적형상 설계)

  • Kang, Seung-Kyu;Kang, Sin-Hyoung;Sung, Nak-Won;Yoon, Joon-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.1 s.40
    • /
    • pp.7-13
    • /
    • 2007
  • This study proposes a modified bifurcation model with a computational fluid analysis according to variation of a bifurcation geometry. FLUENT is used for a calculation of the head losses in case of a generation and a pumping. The pressure, velocity field and turbulent intensity are simulated in a bifurcation. With consideration about these flow properties, we propose the modified model to improve a flow efficiency and reduce a sound. The proposed model is able to cut down a head loss by 45% when a generation and 36% when a pumping.

Thermochemical Performance Analysis of KSR-III Rocket Nozzle (KSR-III 로켓 노즐의 열화학적 성능해석)

  • Choi, J.Y.;Choi, H.S.;Kim, Y.M.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.90-98
    • /
    • 2001
  • Characteristics of high temperature rocket nozzle flow is discussed along with the aspects of computational analysis. Three methods of nozzle flow analysis, frozen-equilibrium, shifting-equilibrium and non-equilibrium approaches, were discussed, those were coupled with the methods of computational fluid dynamics code. A chemical equilibrium code developed for the analysis of general hydrocarbon fuel was coupled with three approaches of nozzle flow analysis. The approaches were used for the performance prediction of KSR-III Rocket, and compared with the theoretical results from NASA CEA (Chemical Equilibrium with Applications) code.

  • PDF

Computational Study of the Magnetically Suspended Centrifugal Blood Pump (2nd Report: Pressure Fluctuation and Stability of Impeller Rotation for Different Volute Shapes)

  • Ogami, Yoshifumi;Matsuoka, Daisuke;Horie, Masaaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.4
    • /
    • pp.375-386
    • /
    • 2011
  • The turbo-type blood pump studied in this paper has an impeller that is magnetically suspended in a double volute casing. The impeller rotates with minimal fluctuations caused by fluid and magnetic forces. In order to improve stability of the rotating impeller and to facilitate long-term use, a careful investigation of the pressure fluctuations and of the fluid force acting on the impeller is necessary. For this purpose, two models of the pump with different volute cross-sectional area are designed and studied with computational fluid dynamics software. The results show that the fluid force varies with the flow rate and shape of the volute, that the fluctuations of fluid force decrease with increasing flow rate and that the vibratory movement of the impeller is more efficiently suppressed in a narrow volute.

Analysis of newly designed CDI cells by CFD and its performance comparison

  • Kwon, Se Hwan;Rhim, Ji Won
    • Membrane and Water Treatment
    • /
    • v.7 no.2
    • /
    • pp.115-126
    • /
    • 2016
  • In this study, computational fluid dynamics (CFD) analysis was conducted to investigate the flow pattern and to find the occurrence of dead zones in an existing capacitive deionization (CDI) cell. Newly designed cells-specifically designed to avoid dead zones-were analyzed by CFD in accordance with the flow rates of 15, 25 and 35 ml/min. Next, the separation performances between the existing and newly designed cell were compared by conducting CDI experiments in terms of salt removal efficiency at the same flow rates. Then, the computational and experimental results were compared to each other. The salt removal efficiencies of the hexagon flow channel 1 (HFC1) and hexagon flow channel 2 (HFC2) were increased 88-124% at 15 ml/min and 49-50% at 25 ml/min, respectively. There was no difference between the existing cell and the foursquare flow cell (FFC) at 35 ml/min.

NUMERICAL FLOW FIELD ANALYSIS OF AN ARCJET THRUSTER (Arcjet Thruster 유동의 전산해석)

  • Shin, Jae-Ryul;Choi, Jeong-Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.101-105
    • /
    • 2006
  • The computational fluid dynamic analysis has been conducted for the thermo-chemical flow field in an arcjet thruster with mono-propellant Hydrazine (N2H4) as a working fluid. The Reynolds Averaged Navier-Stokes (RANS) equations are modified to analyze compressible flows with the thermal radiation and electric field. The Maxwell equation, which is loosely coupled with the fluid dynamic equations through the Ohm heating and Lorentz forces, is adopted to analyze the electric field induced by the electric arc. The chemical reactions of Hydrazine were assumed to be infinitely fast due to the high temperature field inside the arcjet thruster. The chemical and the thermal radiation models for the nitrogen-hydrogen mixture and optically thick media respectively, were incorporated with the fluid dynamic equations. The results show that performance indices of the arcjet thruster with 1kW arc heating are improved by amount of 180% in thrust and 200% in specific impulse more than frozen flow. In addition to thermo-physical process inside the arcjet thruster is understood from the flow field results.

  • PDF

Flow Analysis for the Sludge Pneumatic Dehydrator with Cyclone Type (사이클론형 슬러지 공기건조기의 유동해석)

  • Kim, Bong-Hwan;Jung, Dae-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.1-6
    • /
    • 2009
  • Air drying technology was developed as an equipment for reducing of moisture content from wastewater treatment and waterworks sludge cake and reproducing it by reusable matter. Advantage of cyclone type pneumatic dehydrator is simple and excellent drying performance. The air drying equipment was composed to the air ejector which made high-speed fluid field, and cyclone which made circling fluid field. Dewatered cake was crushed at the high-speed zone as first step, and formed with dried powder of sphere shape by the collision between particles at the circling fluid zone. In this study, a CFD analysis has been performed to predict air-sludge particles flow in cyclone and ejector of pneumatic dehydrator. The computational results showed typical Rankine vortex structure which was frequently found in swirling flow phenomena. And the conical type wedge in lower part of a cyclone prevented accumulation of the sludge particles in the cyclone. Therefore, this technology was effective in drying of dehydrated cake of waterworks sludge.

  • PDF

Pulsatile Blood Flows Through a Bileaflet Mechanical Heart Valve with Different Approach Methods of Numerical Analysis : Pulsatile Flows with Fixed Leaflets and Interacted with Moving Leaflets

  • Park, Choeng-Ryul;Kim, Chang-Nyung;Kwon, Young-Joo;Lee, Jae-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1073-1082
    • /
    • 2003
  • Many researchers have investigated the blood flow characteristics through bileaflet mechanical heart valves using computational fluid dynamics (CFD) models. Their numerical approach methods can be classified into three types; steady flow analysis, pulsatile flow analysis with fixed leaflets, and pulsatile flow analysis with moving leaflets. The first and second methods have been generally employed for two-dimensional and three-dimensional calculations. The pulsatile flow analysis interacted with moving leaflets has been recently introduced and tried only in two-dimensional analysis because this approach method has difficulty in considering simultaneously two physics of blood flow and leaflet behavior interacted with blood flow. In this publication, numerical calculation for pulsatile flow with moving leaflets using a fluid-structure interaction method has been performed in a three-dimensional geometry. Also, pulsatile flow with fixed leaflets has been analyzed for comparison with the case with moving leaflets. The calculated results using the fluid-structure interaction model have shown good agreements with results visualized by previous experiments. In peak systole. calculations with the two approach methods have predicted similar flow fields. However, the model with fixed leaflets has not been able to predict the flow fields during opening and closing phases. Therefore, the model with moving leaflets is rigorously required for advanced analysis of flow fields.

A FLUID TRANSIENT ANALYSIS FOR THE PROPELLANT FLOW IN A MONOPROPELLANT PROPULSION SYSTEM (단일추진제 추진시스템의 과도기유체 해석)

  • Chae, Jong-Won
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.69-81
    • /
    • 2005
  • A fluid transient analysis for the propellant flow in a monopropellant propulsion system is conducted by using the method of characteristics(MOC). It reviews algebraic simultaneous equations method and Cramer's rule method utilized to drive the compatible and characteristic equations to understand MOC extensively. The identification of fluid transient phenomena of propulsion system of Koreasat 1 is carried out through parametric studies. The valve response time is one of the dominant parameters governing the fluid transient phenomena. The results show that the shorter closing time induces the greater pressure response amplitude. And it shows that the installation of in-line orifice is effectively to limit the fluid transients in rapid valve response time and at high pressure. But it seems that the effect of orifice weakens at slow valve response time and at low pressures.